Courses/projects/internships offered for Erasmus students (in English) 2023-24

by the department of Electronic Engineering of Hellenic Mediterranean University

ELECTRONIC ENGINEERING - CHANIA					
COURSE TITLE	INSTRUCTOR	STUDY LEVEL	PAGE #	SEMESTER	ECTS
Structured Programming	N. Bikakis bikakis@hmu.gr or/and new lecturer	Bachelor	6	W/S	5
Data Structures	N. Petrakis nik.s.petrakis@hmu.gr	Bachelor	7	W/S	5
Computer Architecture	N. Petrakis nik.s.petrakis@hmu.gr	Bachelor	8	W/S	5
Digital Image Processing	A. Konstantaras akonstantaras@hmu.gr	Bachelor	10	W/S	5
Automatic Control Systems	G. Fouskitakis fouskit@hmu.gr	Bachelor	10	S	4
Power Electronics	I.Chatzakis jchatzakis@hmu.gr	Bachelor or Master	11	W/S	4
An Introduction to Laser Physics and Applications	K.Petridis <u>cpetridis@hmu.gr</u>	Bachelor	12	W/S	5
Soft and Research Skills Development	K.Petridis cpetridis@hmu.gr	Bachelor	14	W/S	5
An Introduction to Optoelectronics & Optical Communications	K.Petridis cpetridis@hmu.gr	Bachelor	16	S	5

^Algorithms and Complexity	^New Lecturer	Bachelor or Master	18	W	5
^ Information Systems Analysis and Design	^New Lecturer	Bachelor	19	S	5
^Differential Equations and Computational Algorithms	^ New Lecturer	Bachelor	19	S	5
Introduction to Plasma Engineering	I. Fitilis fitilis@hmu.gr	Above 3rd Year or Master	20	W/S	4
Display Technologies	I. Kaliakatsos giankal@hmu.gr	\geq 4 th semester	21	W/S	4
Organic Electronics Devices	I. Kaliakatsos giankal@hmu.gr	\geq 4 th semester	23	W/S	4
Antennas and Wireless Communications	I. Vardiambasis ivardia@hmu.gr	Bachelor or Master	25	W	4
Satellite Communications and Systems	I. Vardiambasis ivardia@hmu.gr	Bachelor or Master	28	W	4
Scattering, Propagation & Radiation of Electromagnetic Waves	I. Vardiambasis ivardia@hmu.gr	Bachelor or Master	31	W	4
Electromagnetic Compatibility	C. Nikolopoulos cnikolo@hmu.gr	Bachelor or Master	34	S	4

Microwave Communications	I. Vardiambasis ivardia@hmu.gr	Bachelor or Master	37	S	4
Microwave-Millimeter Wave Communications & Antennas	I. Vardiambasis ivardia@hmu.gr	Bachelor or Master	42	S	4
CAD/CAM Systems, 3D Modeling and Reverse Engineering	E. Maravelakis marvel@hmu.gr	Bachelor	49	W	5
Ecodesign	E. Maravelakis marvel@hmu.gr	Bachelor	50	S	5
^ The course is provided from a non-permanent staff and may will not be offered (changes made in the first 2 weeks)					

Diploma Thesis (6 months)

Diploma Thesis Title	Positions	Study Level	Semester	Professor	Online
Solving electromagnetic wave propagation, radiation and scattering problems using computational techniques	1	Bachelor or Master	W/S	I. Vardiambasis ivardia@hmu.gr	
Telecommunication systems design and development using FPGA technology	1	Bachelor or Master	W/S	I. Vardiambasis ivardia@hmu.gr	
Enhancing 3D printing properties with Biochar	1	Bachelor or Master	W/S	E. Maravelakis marvel@hmu.gr	
3D modeling monumental olive trees of Crete	1	Bachelor or Master	W/S	E. Maravelakis marvel@hmu.gr	

>> Other diploma thesis could be suggested upon request to the faculty members of the Department

Training/Practice (6 months)

Description of Training/practice	Positions	Semester	Professor	Online
Training in the Telecommunications and Electromagnetic Applications Lab (Mat lab programming, electromagnetic simulation software authoring, boundary value problems solving, electromagnetic field measurements, analysis, design and development of microwave devices and antennas) (Needed :Adequate background in telecommunications and/or electromagnetics, Proficient use of Matlab programming)	1	W/S	I. Vardiambasis ivardia@hmu.gr	
Training in 3D Printing, 3D Scanning and Reverse Engineering. Applications to 3D Documentation of Cultural Heritage	2	W/S	E. Maravelakis marvel@hmu.gr	

>> Other training position could be suggested upon request to the faculty members of the Department

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24 COURSE DETAILS

Course Title	Structured Programming
Instructor	Ass. Prof. Nikolaos Bikakis bikakis@hmu.gr or/and new lecturer
Study level	Bachelor
ECTS	5
Prerequisite	None
Learning Outcomes	 The course is an introduction to structured programming using the C programming language, where the student will start with the basic concepts of variable, data type, loop and will continue learning to structure his code correctly in functions. Upon successful completion of the course the student will be able to: ✓ find/discover solutions to problems of moderate difficulty, to describe the algorithmic solutions in pseudo-code and / or in a flowchart, and of course to be able to encode them. ✓ evaluate algorithmic solutions. ✓ design and implement software applications that provide access to text files. ✓ design and write code for programs that require the use of vectors or arrays composed of structure type elements. ✓ use sorting and/or searching techniques as appropriate.
Contents	 Introduction to Informatics and Computers. The concept of the algorithm. Algorithm structures. Flowcharts. Programming in C language. Data types. Variables. Constants. Strings. Control statements. Operators (arithmetic, relational, logical, bitwise, etc). Loop control statements. Functions and building blocks of the program. One-dimensional / multidimensional arrays. Pointers. Pointers, Memory Allocation Files
Course type	Meetings, Project-based
Assessment	Programming assignments, Written exams
Bibliography	 H.H. Tan, T.B. D'Orazio, <i>C Programming for Engineering & Computer Science</i>, McGraw-Hill, 2000. H.M. Deitel, P.J. Deitel, <i>C: How to Program</i>, 2nd edition, Prentice-Hall, 1999. B. Kernigham, D. Ritchie, <i>The C Programming Language</i>, 2nd edition, Prentice-Hall, 1988. H. Schildt, <i>C The Complete Reference</i>, Osborn/McGraw-Hill, 1987. A. Tenenbaum, Y. Langsam, M. Augenstein, <i>Data Structures Using C</i>, Prentice-Hall, 1990. Herbert Schildt, <i>C The Complete Reference</i>, Osborn/McGraw-Hill, 1987.

Course Title	Data Structures
Instructor	Dr. Eng. Nikolaos Petrakis nik.s.petrakis@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	Basic knowledge of Computer Programming using C.
Learning Outcomes	The course is an introduction to algorithms and data structures, using as a tool a programming language such as C / C ++, where the student will start with the basic concepts and terminology and will continue learning to design, implement and evaluate the solutions. Upon successful completion of the course the student will be able to: ✓ mention and describe the characteristics of the basic data structures.
	 ✓ mention and describe the basic algorithms for searching and sorting data (internal and external). ✓ mention and describe binary trees traversal methods. ✓ mention basic algorithms in Graphs.
	 analyze a complex problem and design the solution on an abstract level. analyze the quality of a solution in relation to the execution time of its individual procedures. Tcompose the solution of a problem based on the individual parts of the
	 solution. ✓ check the correctness of a solution and to evaluate the various alternative solutions to a problem. ✓ Eevaluate both the quality of the design and the implementation of the solution of a problem.
	 modify known algorithms so that they can be better utilized in solving a problem. evaluate the algorithmic solutions in relation to the execution time of the respective algorithm.
	 design and write code for programs that require the use of data structures. use the most appropriate sorting or searching technique taking into account the expected distribution of data.
	 find solutions to complex problems, to describe its algorithmic solutions in pseudo-code and / or in a flowchart, and of course to be able to encode them.
Contents	 Introduction to the basic concepts of data structures and algorithms. Accessing sequential files. Define new type or variable as a data union. Arrays, linearization of multidimensional arrays. Stacks. Define the most important operations that can be performed in a stack, implemented using either static or dynamic data types. Queues and fundamental operations that can be defined in a queue. Queue implementation with circular array (static) and queue implementation with nodes (dynamic). Singly linked lists. Doubly linked lists and function definitions for basic operations. Two-way interconnection technique using just a single link.

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

	 Design and implementation of appropriate data structures for specific programming problems. Evaluation of different data structures. Straight sorting methods: sort by selection, shaker sort and bubble sort. Quick sort technique. Sort variable-length sequences. Sorting files using natural merge sort. Sequential search. Binary search. Performance and analysis of algorithms. Time complexity. Algorithm performance comparison. Graphs. Learn software design and implementation principles in the Dev-C ++ or CODE :: BLOCKS or MS Visual Studio environment.
Course type	Weekly lectures/practice 3hr/2hr (if the number of students is greater than 4), else
	project-based course with weekly meetings
A	project-based course with weekly meetings.
Assessment	written exams, class contribution, delivery of small individual projects every two
	weeks.
Bibliography	 Leendert Ammeraal, Programs and data structures in C, John Wiley & Sons Ltd, 1987. H.H.Tan, T.B. D'Orazio, C Programming for Engineering & Computer Science, McGraw-Hill, 2000. H. M. Deitel, P. I. Deitel, C: How to program (second edition). Prentice-Hall
	1999.
	4. A. Tenenbaum, Y. Langsam, M. Augenstein, Data Structures Using C, Prentice- Hall, 1990.
	5. A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms", Addison-Wesley Publishing Company, 1974.

Course Title	Computer Architecture
Instructor	Dr. Eng. Nikolaos Petrakis nik.s.petrakis@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	Basic knowledge of Computer Programming using C, Digital Systems Design
Learning	Familiarity with the internal structure and basic operations of a computer as well as
Outcomes	gaining knowledge in the organization and design of the hardware and software that
	make up a typical computing system. Emphasis will be placed on the lower levels, the
	level of digital logic and the design of the central processing unit.
	Programming in machine language and in symbolic language (assembly).
	Understand processor organization, memory, datapath and input / output structures.
	Upon successful completion of the course students will be able to:
	\checkmark Explain the purpose of CPU, I / O subsystems, and various storage subsystems.
	\checkmark Understand the Instruction Set Architecture (ISA) of a machine, its design and
	implementation.
	\checkmark Distinguish computers based on their set of instructions.

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

	 Describe the modern methodology for evaluating and comparing processor performance. Describe how to internally represent integer and real (floating point) numbers (IEEE 754) and perform conversions according to the standard. Describe the basic ways of addressing and give examples of instructions that use them. Describe the technique of partially overlapping operations and its expected benefits. Know the low level programming rules and execute code including defining and calling procedures, leaf-procedures, but also non-leaf procedures using the stack correctly. Understand the relationship between hardware and software and the relationship between low-level programming and high-level programming. Understand the implementation of the control unit either as a classical sequential circuit or with the technique of microprogramming. To know the basic principles that govern the organization of modern processors, and some modern research trends in the field of computer architecture. Use the MIPS emulator of the MIPS processor for programming at the machine language level.
Contents	 Compulsory course for students in the field of computer organization and computer architecture. Reference to historical data on the evolution of computers and categories of computer systems. RISCs and CISCs. The internal structure of a modern thirty-two-bit processor (MIPS32) is gradually revealed through the study of its instruction set. Also, reference is made to issues of design of computer systems with parallel processing (MIMD, SIMD). Categories of computer applications and their characteristics. Structure and basic operations of a typical computer. Study of the instruction repertoire. Machine language - representation of instructions on the computer. Symbolic language (assembly language). High level programming language support. Hardware support for procedures (leaf procedures and non-leaf procedures). Addressing modes. Signed / unsigned integer representation. Arithmetic and logic unit and arithmetic and logic operations. Representation of real (floating point) numbers (IEEE 754) and operations with them. Computer evaluation and understanding of performance. Address and data paths and datapath design. Control unit and timings. Microprogram development. Increase efficiency by pipelining. Main memory. Auxiliary memory. Cache memory. Virtual Memory. Memory technology. Content Addressable Memories (CAM). Input / Output Units.

	• Using the various tools (SPIM or MARS) introduced in the course, students should
	explore in depth several aspects of computer architecture and / or organization to
	achieve a more complete understanding
Course type	Weekly lectures/practice 3hr/2hr (if the number of students is greater than 4), else
	project-based course with weekly meetings.
Assessment	Written exams, class contribution, delivery of small individual projects every two
	weeks.
Bibliography	1.D. A. Patterson, J. L. Hennessy, Computer Organization and Design - The
	Hardware / Software Interface, 5th ed., Morgan Kaufman Publishers, 2014.
	2. J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Approach,
	6th ed., Morgan Kaufman Publishers, 2018.

Course Title	Digital Image Processing
Instructor	Asc. Prof. Antonios Konstataras akonstantaras@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	None
Learning	The basic concepts and algorithms applied to image processing systems and graphics
Outcomes	cards are presented, while providing examples that allow students to become familiar
	with them, as well as technical computing tools in Matlab and CUDA. Students who
	have successfully completed the course will have a good understanding and knowledge
	of the main concepts, algorithms, and tools in the field of digital image processing and
	will have implemented applications in actual systems.
Contents	Image fundamentals, image enhancement in the spatial and frequency domains,
	restoration, color image processing, wavelets, image compression, morphology,
	segmentation, image description, and the fundamentals of object recognition.
Course type	Weekly meetings, project and lecture based
Assessment	
Bibliography	1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Prentice
	Hall, 2008.
	2. Rafael C. Gonzalez, Richard E. Woods and Steven Eddins, "Digital Image
	Processing Using Matlab", McGraw Hill Education, 2010.

Course Title	Automatic Control Systems
Instructor	Assoc. Prof. G. Fouskitakis, e-mail: fouskit@hmu.gr
Study level	2nd year - Winter/Spring semester
ECTS	4
Prerequisite	Mathematics 1, Signals & Systems
Learning	The aim of the course is to obtain the theoretical and practical background in Automatic
Outcomes	Control Systems in both the continuous and digital time as well as their applications.
	The course aims to introduce students to the basic concepts of Automated Control
	Systems.

	Upon successful completion of the course the student will be able to:
	• Mathematically represent a dynamic system via its transfer function.
	• Analyze – utilizing its transfer function – the behavior of a dynamic system.
	• Define a set of desired control system properties.
	• Design closed-loop control systems.
	• Appropriately tune PID controllers to match the desired closed-loop control
	system's properties.
	• Analytically design closed-loop control systems.
	Evaluate the closed-loop control system's steady-state errors and its "type".
Contents	Representation of dynamical systems with transfer functions.
	System analysis in both the time and the frequency domains.
	Stability analysis.
	Block diagram algebra.
	Closed-loop control systems.
	PID controllers.
	PID tuning via the empirical Ziegler-Nichols method.
	Simulation of closed-loop control systems
	Closed-loop control system design via the pole placement method.
	Evaluation of steady-state errors.
	Evaluation of the closed-loop control system "type".
Course type	Project, on-line lecture notes, on-line videos, sets of theoretical and practical
	exercises.
Assessment	Project and sets of exercises
Bibliography	B. Kuo, "Automatic Control Sytems", 7th Edition, Prentice Hall, 1994.
	 R. Don, Modern Control Systems, 13th Edition, Pearson Editions, 2016. J. Distefano, A. R. Stubberud and I. J. Williams "Schaum's Outline of Feedback
	and Control Systems", 2nd Edition, McGraw-Hill Education, 2013.
	• N. S. Nise, "Control Systems Engineering", 8th Edition, John Wiley & Sons, 2019.
	3. P. N. Paraskevopoulos, "Digital Control Systems", 1st Edition, Prentice Hall,
	1996.

Course Title	Power Electronics
Instructor	Prof. John Chatzakis jchatzakis@hmu.gr
Study level	Bachelor
ECTS	3
Prerequisite	Fundamental Analog Electronics
Learning	Knowledge: After completing the course, the student will:
Outcomes	 ✓ have an in-depth understanding of the role of Power Electronics to electrical energy conversion as AC/DC, DC/DC or DC/AC and AC/AC conversion. ✓ understand operating principles and modulation strategies for basic Power Electronics Topologies and the properties of several PWM techniques and their applications to switch-mode power electronic systems. ✓ be able to identify the most important design parameters and to recognize the impact of operating parameters on the design and use of power electronic devices Skille: After conclusion of the course, the student will be able to:
	Skills: After conclusion of the course, the student will be able to:

	 ✓ recognize, define, and analyze power electronic converters that perform AC/DC, DC/DC, DC/AC and AC/AC conversions ✓ design power electronic converters exhibiting high-performance operation ✓ analyse the operating principles and modulation for power electronic systems Competences: After completing the course, the candidate has increased: ✓ skills in cooperation - ability to communicate effectively about the Power Electronic Systems ✓ ability to contribute to innovation and innovation processes
Contents	 Definition of "Power Electronics", Semiconductors (Si, SiC, GaN) and Power Semiconductor Devices and Components, (Diode, Thyristor, GTO, MCT, TRIAC, Power BJT, Power MOSFETs, SJ MOSFET, IGBT, HEMT, TRIAC), Circuits with switches and diodes (with load RC, RL, RLC), semiconductor protection, damping oscillations - snubbers, MOVs, fuses, current sensing protection - protection through the drive circuit. Rectifiers, multiphase rectifiers, controlled rectifiers with thyristor. RL and LC low-pass filters, Fourier analysis, harmonics spectrum use, ripple coefficient (K), total harmonic distortion factor (THD), harmonic coefficients (HF 1,2), power factor (PF). DC / DC conversion, buck converter, CCM and DCM operation, Boost converter, positive to negative converter. Duty Cycle Definition and Control using Pulse Width Modulation (PWM). Switching Power Supplies, power factor correction (PFC), pulse transformer, Forward Converter, semi-bridge, Full Bridge, Push-Pull, coupled coils, Flyback converter. Inverters: Half Bridge, Bridge, PWM Technique, MPWM Technique, Technique PDM, Modulation Factor (Mf), SPWM Technique, Normal Carrier Frequency (Fnc), HF-Link, Three Phase Inverters, Inverters and Motor Drive, Class D amplifiers. Class E, Cycloconverters. MCUs, DSPs and Power Electronics, Digital PWM Units. MPPT, PFC, Batteries and Battery Management.
Course type	Weekly Lectures 2hr/week
Assessment	Written exams, class contribution, short project presentation.
Bibliography	1. N. Mohan, T.M. Undeland, W.P. Robbins, Power Electronics: Converters,
	Applications, and Design, Wiley, 2002.
	2. S. N. Manias, Power Electronics, Simeon Publ., Athens 2012.

Course Title	An Introduction to Laser Physics and Applications
Instructor	Asc. Prof. Kostas Petridis cpetridis@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	None
Objectives	Light Amplification by Stimulated Emission of Radiation – LASERS introduced to the
	scientific community in 1958 (as a theoretical concept) and in 1960's as an operational

 directly related to LASER Technology (with the last one in 2018). Today there is activity that does not involve Laser light The objectives of the course (offered for undergraduate and postgraduate students) a the following: Develop an understanding of the special properties of laser light 	10 re
 activity that does not involve Laser light The objectives of the course (offered for undergraduate and postgraduate students) a the following: Develop an understanding of the special properties of laser light 	re
 The objectives of the course (offered for undergraduate and postgraduate students) a the following: Develop an understanding of the special properties of laser light 	re
 Develop an understanding of the special properties of laser lig 	
• Develop an understanding of the special properties of faser ing	
monochromaticity directionality spatial & temporal coherence	π,
 To offer the understanding of the building blocks of a laser device 	
 Develop the understanding of the operational principles of a laser device; 	a)
Threshold Level; (b)Small Gain Coefficient; (c) Gain Saturation; (d) Steady Sta	te
Condition Operation; (e) Spectral Broadening; (f) Laser Beam Propagati	on
through vacuum and through optical elements; and (g) Pulsed Operation	
The Introduction of various Laser Systems	
The Introduction of various Laser Applications	
The Learning Outcomes of the module 'An Introduction to Laser Physics a	nd
Applications' are the following:	Iu
Intended • to be able to explain how does a laser device operate	
Learning • to be able to design a laser system	
• to be able to calculate various parameters related to a laser configuration: las	er
beam size, laser intensity, tunning range	
Indicative An indicative syllabus of the course follows:	
Synapus 1. An introduction of Lasers & Applications 2. The Light Matter Internation Processes the Einstein Pate Equations and t	20
2. The Light Matter Interaction Processes, the Emistern Rate Equations and the requested Population Inversion	IC
3 The Electron Harmonic Oscillator Model	
4. The Small Gain Coefficient & Related Losses	
5. The Pumping Schemes	
6. The Role of the Optical Oscillator	
7. The Broadening Mechanisms: Homogeneous and Inhomogeneous Broadening	
8. Longitudinal & Transverse Laser Modes	
9. The Gain Saturation (Spatial Hole Burning and the Lamb Deep)	
10. Tunable Laser Systems	
11. Gaussian Beams and the ABCD Matrix Method	
13. Generation of Laser Pulses: The Mode Locking Technique	
14. Modern Laser Systems I	
15. Modern Laser Systems II	
16. Laser Applications in Medicine	
17. Laser Applications in Nanoelectronics	
18. Laser Applications in Energy Generation: Laser Fusion	
19 Laser Applications in Engineering: Laser 3D Printing and Laser Biomimetics	
The Luser representations in Engineering, Easter 22 Finning and Easter Etonimiteties	
20. Laser Applications in Optical Communications	
20. Laser Applications in Optical Communications Teaching Lectures (online face to face): Every week 3 hours	

Methodology	Seminars: One seminar per two weeks where an external/invited speakers interacts
	with our students in Laser Applications
Assessment	
Methods	
in	Final Test (70% of the overall grade)
Alignment	Thial Test (70% of the overall glade)
with	D resentations during the course $(200\% \text{ of the overall grade})$
Intended	resentations during the course (50% of the overall grade)
Learning	
Outcomes	
Students'	Lectures: 36 hrs
Working	Homework/Study Time 108 hrs
Load	Seminars: 12 hrs
	In total $156 \text{ hours} \rightarrow 5\text{ECTS}$
Reading	• Lecture's Notes
List and	Principles of Lasers by O. Svelto
References	Fundamentals of LASERS by Silfast

Course Title	Soft and Research Skills Development
Instructor	Asc. Prof. Kostas Petridis cpetridis@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	None
Objectives	Soft skills are a combination of people skills, social skills, communication skills, character or personality traits, attitudes, career attributes, social intelligence, and emotional intelligence that enable people to navigate their environment, work well with others, perform well, and achieve their goals with complementing hard skills. The Collins English Dictionary defines the term "soft skills" as "desirable qualities for certain forms of employment that do not depend on acquired knowledge: they include common sense, the ability to deal with people, and a positive flexible attitude Research skills like Bibliographic research, Academic Writing, Poster Presentation, Promotion of your Research, Grant Writing, Interview Tips and Digital Skills are also important to be taught from the final undergraduate year of any discipline. The objectives of the course (offered for undergraduate and postgraduate students) are the following: Develop an understanding of the importance of soft & research skills including how soft & Research skills are:

	Connected to technical or hard skills
	• Raise awareness amongst students, teachers, and professionals
	• Identify necessary soft skills depending on expertise
	• Assess how soft skills can be improved
	• Clarify and apply effective communication skills
	• Define and outline effective leadership skills including best practices
	• Examine and develop sense of self and culture
	• What are the Soft Skills a Scientist should have (Time Management, Problem
	Solving and Communication Skills)
	• How Research Skills are connected with your research and professional career
	The Learning Outcomes of the Soft & Research Skills Development Module are
	the following:
	• to be able to provide an overview of the most wanted soft skills the labor
	market requires
	• to be able to apply the presented soft & research skills in her daily academic
	and research life
Intended Learning	• to be able to cope successfully in an interview process
Outcomes	• to be able to analyze a complex problem into smaller units
	• to be able to present, negotiate and convince of her claims
	• to be able to write, submit and evaluate her work
	• to be able to communicate digitally and face to face communication
	• to be able to come back from fall back
	• to be able to adapt in any new professional or social environment
Indicative Syllabus	An indicative syllabus of the course follows:
	1. Definition of Soft Skills & their Importance for Professional Development
	and Survival
	2. Building Your Oral Presentation Skills
	3. Building Your Time Management Skills
	4. Building Your Stress Management Skills
	5. Building Your Critical Thinking Skills
	6. Building Your Problem Solving Skills
	7. Building Your Resilience Skills
	8. Building Your Collaboration Skills
	9. Building Your Adaptability Skills
	10. Building Your Leadership Skills
	11. Building Your Academic Writing Skills
	12. How to Promote Your Research
	13. How to Build Your Network and Write a Proposal
	14. Building Your Interview Skills
	15. Building Your Digital Skills
	16. Building Your Digital Profile
	17. How to use LinkedIn for your Career Development
	18. Building Your Negotiation Skills
	19. Building Your Motivation Skills
	20. Building Your Emotional Intelligence Skills

Teaching/Learning	Lectures (online, face to face): Every week three hours
Methodology	Seminars: One seminar per two weeks where an external speaker interacts with our students in one of the aforementioned topicsWorkshops: Where students practice the soft skills are taught
Assessment Methods in Alignment with Intended Learning Outcomes	Final Test (70% of the overall grade) Presentations during the course (30% of the overall grade)
Students' Working	Lectures: 36 hrs
Load	Homework/Study Time 108 hrs
	Seminars: 12 hrs
	In total $156 \text{ hours} \rightarrow 5\text{ECTS}$
Reading List and	Lecture's Notes
References	 Mindtools (https://www.mindtools.com/)
	 Harvard Business Review Journal (https://hbr.org/)
	• Coursera (https://www.coursera.org/)
	• EdX (https://www.edx.org/)

Course Title	An Introduction to Optoelectronics & Optical Communications
Instructor	Asc. Prof. Kostas Petridis cpetridis@hmu.gr
Study level	Bachelor
ECTS	5
Prerequisite	None
Objectives	Optical communications are the dominant means of information transmission in the world. Even though the physical limitations of electrical cable prevent speeds in excess of 10 Gigabits per second, the physical limitations of fiber optics have not yet been reached. Everyday life applications such as broadband internet, cable HD TV, telemedicine, YouTube, online gaming and cloud based services like e- banking, Facebook and Twitter, owe their existence to the vast bandwidth capacity of the currently deployed global optical communication system. Optical communications to address limitations of radio frequency (RF) communications, including: bandwidth, spectrum and overall size of frequency packages and power used. Optical spectrum uses light as a means of transmitting information via lasers.

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

	Optical communications benefits include being faster, more secure, lighter and more flexible.
	The objectives of the course (offered for undergraduate and postgraduate students) are the following:
	• Realise the different technologies involved within the Optical Communication Technologies
	• Understand the operational principles of the various optoelectronic systems are involved in an optical communications network
	• To be aware of the new concepts of optical communications in the fields of optical networking and 5G Communications
	The Learning Outcomes of the module 'An Introduction to Optoelectronics and Optical Communications' are the following:
	• to be able to understand the concepts of laser operation
	• to be able to understand the concepts of laser pulsed operation
Intended Learning	• to be able to understand the various laser pulses modulation schemes
Outcomes	• to be able to explain the operation of an optical fiber
	• to be able to calculate the dispersion of a laser pulse within an optical fiber
	• to be able to calculate the various losses within a waveguide
	• to be able to design an optical network system
	• to be able to design an optical network system
Indicative Syllabus	An indicative syllabus of the course follows:
indicutive syndous	An Introduction to Lasers
	The Lorentz Principle
	• The Einstein Rate Equations
	Broadening Mechanisms
	• The Resonator Principle
	Gaussian Optics
	• The Semiconductor Laser Systems
	Generation of Laser Pulses
	Characterization of Laser Pulses
	• Frequency and Amplitude Modulation of Laser Pulses
	The Fiber Optic Concept
	The Wave Propagation in vacuum and in waveguides
	• The EDFA concept
	Optoelectronic Devices for Optical Communications
	• The Dispersion issue within optical fibers – solutions
	Wavelength Dispersion Multiplexing
	Optical Technologies for networking
	Optical Technologies for Access Network
	Optical Technologies for 5G Networking Optical Technologies for Data Contan Nationali
	• Optical Technologies for Data Center Networking
Teaching/Learning	Lectures (online, face to face): Every week three hours
Methodology	Seminars: One seminar per two weeks where an external/invited speakers
	interacts with our students in Optical Communications

Assessment		
Methods	Final Test (70% of the overall grade)	
in Alignment with		
Intended Learning	Presentations during the course (30% of the overall grade)	
Outcomes		
Students' Working	Lectures: 36 hrs	
Load	Homework/Study Time 108 hrs	
	Seminars: 12 hrs	
	In total $156 \text{ hours} \rightarrow 5\text{ECTS}$	
Reading List and	Lecture's Notes	
References	• Suggested Bibliography	

Course Title	Algorithms and Complexity
Instructor	TBA before begin of semester (may not be offered)
Study level	Bachelor or Master
ECTS	5
Prerequisite	Basic knowledge of the mathematical method of reduction. Knowledge of
	programming.
Learning	The course provides an introduction to differential equations, specially designed for
Outcomes	electronic engineers. Topics also include numerical techniques for the solution of initial
	value problems.
Contents	• What is an algorithm? The concept of complexity.
	• Iterative and recursive algorithms
	Greedy algorithms
	Divide and Conquer
	• Sorting
	• Searching
	Random number generation
	Linear programming
	Dynamic programming
	NP completeness. Reductions
Course type	Weekly Lectures 4hr/week (3 theory, 1 programming)
Assessment	Written exams, weekly assessments, final project in Python.
Bibliography	1. The Algorithm Design Manual, S.S. Skiena, 2nd ed., Springer-Verlag, 2008.
	2. Introduction to the Design and Analysis of Algorithms (3rd Edition) 3rd Edition,
	Anany Levitin, 2012.
	3. Introduction to Algorithms, T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
	S.S. Skiena, 3rd ed., The MIT Press, 2009

formation Systems Analysis and Design
BA before begin of semester (may not be offered)
chelor or Master Semester: Spring
sic concepts of IS
ethods of information and requirement gathering
models by use of techniques such as Data Flowcharts,
tity-Relationship Diagrams, UML Diagrams, etc.
Design (OO approach).
security and control checks.
sic Python OOP.
e course deals with planning the development of information systems through
derstanding and specifying what a system should do and how the components of the
stem should be implemented and work together. We will go through the concepts,
ills, methodologies, techniques, tools, and perspectives essential for systems
alysts. We will study the model of entity relationships and consider the use of UML
a modelling language. The practical component of the course is object oriented and
e-case driven. Examples of real-life systems will be constructed and implemented by
ackly Lastyres (2 theory 1 programming)
eekry Lectures 4m/week (5 meory, 1 programming)
ritten exams, weekly assessments, final project in Python.
Kendall and Kendall, System analysis and design, Pearson, 2019.
Curtis G., Cobham D.P., Business Information Systems: Analysis, Design and
Practice, Pearson Education, 2008.
Halpin T., Morgan T., Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design, Morgan Kaufmann, 2008.
D. Avison, G. Fitzgerald, Methodologies for developing Information Systems: A
historical perspective, 2006.

Course Title	Differential Equations and Computational Algorithms
Instructor	TBA before begin of semester (may not be offered)
Study level	Bachelor
ECTS	5
Prerequisite	Basic knowledge of differentiation and integration techniques.
Learning	The course provides an introduction to differential equations, specially designed for
Outcomes	electronic engineers. Topics also include numerical techniques for the solution of initial
	value problems.
Contents	• First order ODEs, method of variable separation
	Gradient, divergence and curl. Laplacian
	• First order nonhomogeneous ODEs. Method of undetermined coefficients

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

	• Applications of first order ODEs to practical problems in mechanical and electrical
	engineering
	• ODEs of order >1, method of variable separation
	 Second order linear homogeneous ODEs with constant coefficients
	• Second order nonhomogeneous ODEs with constant coefficients. Method of undetermined coefficients
	• Applications of second order ODEs with constant coefficients to practical problems
	• N-th order linear homogeneous and nonhomogeneous ODEs with constant
	coefficients
	• Second order linear homogeneous ODEs with constant coefficients - The Laplace
	transform method
	• Numerical solution of first order initial value problems. Euler, and RK methods
Course type	Weekly Lectures 4hr/week (3 theory, 1 tutorial)
Assessment	Written exams, weekly assessments.
Bibliography	 C.H. Edwards, Jr., David E. Penney, <i>Elementary Dfifferential Equations with</i> <i>Applications (Third Edition)</i>, Prentice-Hall, Englewood Cliffs, NJ, 1996. Chapra, S. C., & Canale, P. P. (2006), <i>Numerical methods for engineers</i>
	Boston: McGraw-Hill Higher Education.

Course Title	Introduction to Plasma Engineering
Instructor	Ass. Prof. Ioannis Fitilis fitilis@hmu.gr
Study level	Bachelor above 3 nd year or Master
ECTS	4
Prerequisite	Basic knowledge of electromagnetism and optics (Lorentz force, e/m waves formalism, Maxwell equations, dielectric\magnetic constant, refractive index, refraction, etc.)
Learning	The course introduces the students to the fundamental of plasma and the
Outcomes	applications of plasma technology.
	After completing the course, the student will be able to:
	\checkmark understand the plasma phase of the matter, the unique properties it has
	and the different types of plasmas.
	✓ calculate/evaluate basic plasma parameters
	✓ mention the different formulations of plasma description and where could be applied
	✓ recognize the different type of waves that could develop/propagate in plasmas and their properties
	 ✓ have knowledge of the different technologies of plasma sources and their properties
	✓ describe various plasma applications and choose the proper plasma sources
	✓ use proper diagnostics for plasma sources characterization

	✓ mention and describe the various type of dense plasma generators and their applications.
Contents	 Introduction to plasma: definitions, properties, Debye shielding, temperatures- densities, types of plasmas, plasma frequency. Plasma descriptions: particle motion, kinetic description, two-fluid description, magneto-hydrodynamic (MHD) description, ideal-MHD, plasma conductivity. Waves in plasma: waves in non-magnetized plasma, phase velocity, refractive index, critical density. Waves in magnetized plasma, cutoff-resonance, MHD waves. Plasma sources: electric discharge tubes, plasma torch, corona discharge, Dielectric Barrier discharge, RF discharge, Microwave discharge. Electron beam plasmas. Laser plasmas. Plasma applications: Material processing, nanolithography, plasma antennas, plasma monitor, plasma thrusters, spectroscopy, sterilization, Plasma diagnostics: diagnostics of magnetic field, current, particle flow, refractive index, spectroscopy. Diagnostics with X-rays, ion beam. Dense plasma & applications: pulsed power plasma devices. Z-pinch, plasma instabilities, X-pinch & other pinch configurations, Dense Plasma Focus, Tokamak, Stellarator. high photon energy sources, particle acceleration, fusion energy.
Teaching/Learning	Lectures 3hr/week, exercises/questionnaires, short project in plasma applications
Methodology	
Assessment	Written exams 40%, exercises-questionnaires 30%, short project presentation 30%.
Bibliography	 Introduction to Plasma Technology: Science, Engineering and Applications, J.E. Harry, 2010, Wiley-VCH, ISBN Print:9783527327638 Online:9783527632169 Plasma Physics and Engineering, A. Fridman, L.A. Kennedy, 2011, CRC Press, ISBN 9781439812280 Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology, 1st edition (or 2nd edition), M. Keidar, I. Beilis, 2013 (2018), Academic Press, ISBN: 978-0123859778 (978-0128137024) Principles of Plasma Physics for Engineers and Scientists, U.S. Inan, M. Gołkowski, 2011, Cambridge University Press, ISBN 13:9780521193726

Course Title	Display Technologies	
Instructor	Prof. Ioannis.Kaliakatsos giankal@hmu.gr	
Study level	≥4 semester	
ECTS	4	
Prerequisite	Electronic Devices and Circuits	

	The class examines the fundamentals of 2D and 3D display technologies (e.g.	
	human visual system, color and depth perception, color theory and metrology,	
Objectives	and state-of-the-art display technologies), display performance evaluation and	
Objectives	calibration, and display research frontiers. The class is suited for both graduate	
	and undergraduate students. You are encouraged to talk to the Instructor to find	
	out if this is the right course for you.	
Intended Learning	Upon completion of the subject, students will be able to:	
Outcomes	✓ Understand Anatomy of Eye, Light Detection and Sensitivity, Spatial	
	Vision and Pattern Perception, Binocular Vision and Depth Perception.	
	\checkmark Understand Photolithography for Thin Film LCD. Wet Etching. Dry	
	Etching: Flexible Displays.	
	\checkmark Understand Thin Film Electroluminescent Displays. AC Powder	
	Electroluminescent Displays: Organic Electroluminescent Displays:	
	OLEDs, Active Matrix for OLED Displays	
	✓ Be aware of Colorant Transposition Displays MEMs Based Displays 3-D	
	Displays 3-D Cinema Technology Autostereoscopic 3-D Technology	
	✓ Understand Liquid Crystals on Silicon Reflective Micro-display Trans	
	missive Liquid Crystal Micro-display MFMs Micro-display DI P	
	Projection Technology	
Indicative Syllabus	1 Introduction (2 hours)	
	• How applications have been driving display developments?	
	• Evolution of display technology	
	2 Human visual system (8 hours)	
	\circ Eve anatomy and eve optics	
	\circ Usual performance of the eve	
	• Models of visual performance and photometry	
	3. Color vision and colorimetry (12 hours)	
	• Color vision basics	
	• Color matching experiments and color matching functions	
	• Color systems and spaces	
	• Colorisystems and spaces	
	4. 2D display technology and operation (16 hours)	
	 Display evention of the perturbation (10 nours) Display system interfaces and performance parameters 	
	 CRT displays 	
	• Flat panel displays: AMLCD, LCOS, Plasma, OLED,	
	• Projection systems	
	• New display technologies: high dynamic range display, enriched color	
	display	
	5.Display metrology: display performance measurement and calibration (6	
	hours)	
	• General principles of display evaluation	
	 Evaluation of 2D displays 	
	• Color management and calibration	
	6. Binocular vision and 3D display technology (6 hours)	
	 Binocular vision and perception basics 	
	 3D display principles and techniques 	
	 head-mounted displays 	
	• Spatially immersive displays	

Teaching/Learning	Lecture: the fundamentals of physic	cs, chemistry, design, manufacturing
Methodology	processes and various applications of displays will be described using ppt presentations, demonstrating videos, Internet. The students are free to request help. The students are encouraged to solve problems and to use their own	
	knowledge to verify their solutions before	bre seeking assistance.
	Tutorial: a set of problems and group	discussion topics will be arranged in the
	tutorial classes. Students are encoura	ged to solve problems before having
	solutions.	
Assessment	Continuous assessment: 40%	
Methods	Written Report 20%	
Wiemous	Oral Presentation 40%	
	Continuous assessment consists of assig	nments, laboratory reports and mid-term
	test.	
	The continuous assessment will asses	s the students' understanding of basic
	concepts and principles in materials sci	ence.
Students' Working	Lectures 50 hours	
Load - ECTS	Written Report 8 hours	
	Oral Presentation 2 hours	
	Homework 60 hours	
	In total 120 hours	$\rightarrow 4ECTS$
Reading List and	1. Organic Electronics: Materials, Manufacturing, and Applications: Hagen	
References	Klauk	
Kererences	2. Organic Electronics II: More Mat	erials and Applications: Wiley, Hagen
	Klauk	
	3. Color Vision and Colorimetry: Theory and Applications, D. Malacara	
	4. Electronic Image Display, Jon C. L	eachtenauer

Course Title	Organic Electronics Devices	
Instructor	Prof. Ioannis.Kaliakatsos giankal@hmu.gr	
Study level	≥4 semester	
ECTS	4	
Prerequisite	None	
Objectives	The aim of this subject is to provide a course treating the emerging field of Organic Electronics from basics. Organic Semiconductors are an important introductory part of this course. The theory and practice of fabricating discrete and integrated molecular electronic devices and their applications in diverse fields is covered. Means of achieving various electronics functionalities such us memory, logic, etc. by the molecules are treating. Lessons from biological molecular behavior for organic electronics is also examined. An introduction to nano-photonics and nano-FET is also included	
Intended Learning	Upon completion of the subject, students will be able to:	
Outcomes	 Understand the physics behind organic semiconductors Coloulate transment properties in the message pie system. 	
	 Calculate transport properties in the mesoscopic systems. 	

	\checkmark Identify the molecules that can be used for different functions in organic	
	electronics	
	\checkmark Chose a proper method (or different methods) for fabricating particular	
	component	
	 Exploit the behavior of biomolecules for organic electronics 	
	 Gain an introductory knowledge on nano-photonics and nanodevices 	
Indicative Syllabus	Introduction to Organic Electronic	
	• Electronic transport in crystalline organic materials and conductive	
	polymers	
	• Conducting Polymers, small molecules organic semiconductors,	
	• Polymer organic semiconductor,	
	• Electrical and optical properties of organic semiconductors.	
	• Basic Organic LED structure, thin film layers: Hole injection, hole	
	transport, emissive, electron transport and electron injection layers used	
	In organic LEDS.	
	Fabrication and characterization techniques.	
	Recent advances in organic LEDs	
	Applications of OLEDs Listowy of Organia TETs	
	 History of Organic TFTs Device design of OTET device properties and characterization 	
	• Device design of OTFT, device preparation and characterization	
	Applications of UIFIs Ortically summed assentia amia-substantianterio	
	Optically-pumped organic semiconductor lasers Electrically, driven organic lasers	
	 Electrically-uriven organic lasers Recent advances in solid state organic lasers 	
	 NanoEETs 	
	 Nation E18 Exprise of different types of sensors using organic semiconductors 	
	 Fabrication of different sensors using conjugated polymers 	
Toophing/Loorning	• Study of different sensors using conjugated polymers.	
Teaching/Learning	applications in organic electronics devices will be described using pat	
Methodology	presentations demonstrating videos. Internet The students are free to request	
	help. The students are encouraged to solve	
	problems and to use their own knowledge to verify their solutions before seeking	
	assistance.	
	Tutorial: a set of problems and group discussion topics will be arranged in the	
	tutorial classes. Students are encouraged to solve problems before having	
	solutions.	
Assessment	Continuous assessment: 40%	
Methods	Written Report 20%	
	Oral Presentation 40%	
	Continuous assessment consists of assignments, laboratory reports and mid-term	
	test. The continuous assessment will assess the students' understanding of basic	
	concepts and principles in materials science	
Students' Working	Lectures 50 hours	
	Written Report 8 hours	
Load - ECTS	Oral Presentation 2 hours	
	Homework 60 hours	

	In total 120 hours \rightarrow 4ECTS
Reading List and	1. Handbook of Organic electronics and Photonics: Hari Singh Nalwa
References	2. Organic Electronics: Materials, Manufacturing, and Applications: Hagen Klauk
	3. Organic Electronics II: More Materials and Applications: Wiley, Hagen Klauk

Course Title	Antennas & Wireless Communications
Instructor	Prof. Ioannis Vardiambasis ivardia@hmu.gr
Study level	Bachelor or Master
ECTS	4
Prerequisite	Basic knowledge of engineering electromagnetics (electromagnetic fields and waves, Maxwell equations, boundary conditions, boundary value problems, etc.)
Learning Outcomes	The explosive growth and continuous development of the wireless and personal telecommunication systems creates a growing demand for telecommunication engineers with (a) very good background on the theory of antennas and electromagnetic wave propagation, and (b) special knowledge and experience in modern wireless systems.
	industry, because the antenna is the interface between any telecommunication system and the transmission means in wireless communications. This course aims to get students acquainted with the principles of antenna theory and
	electromagnetic wave propagation, in order to use them during analysis and design of wireless telecommunication links. Upon successful completion of the course, students will have acquired knowledge,
	skills, appropriate tools for dealing with practical applications related to antennas and propagation models, as well as experience in designing and optimizing real antennas. More specifically students will be able to:
	+ understand electromagnetic theory and its applications to antennas and transmission of electromagnetic signals carrying information,
	 + understand the theory of antennas and electromagnetic wave propagation in a uniform way, in order to use them in the analysis and design of wireless telecommunications, + describe the basic mechanisms of radio wave propagation and understand the interaction of electromagnetic waves with the environment
	+ be aware of the wave propagation phenomena caused in the real environment and the measurement methods used in practice,
	+ calculate and measure the basic antenna parameters and characteristics (eg radiated power, radiation intensity, directivity, gain, radiation resistance), + compare antenna characteristics (advantages/disadvantages), deciding which is the
	most suitable antenna for each practical application, + perform antenna and electromagnetic radiation measurements
	 + familiarize with various practical antenna devices, + calculate the radiation diagram of an antenna, when its current distribution is known,

	+ evaluate propagation models and select the appropriate model for calculating losses
	in a telecommunications link,
	+ prepare radio coverage studies,
	+ be informed about the latest developments in the field of wireless and personal
	communication systems,
	+ analyze and design wireless telecommunication systems according to the respective
	needs,
	+ be ready to supervise and maintain wireless telecommunications systems.
	I he course is at the core of the Electronic Engineer curriculum.
	Note: The project-based version of the course will help the Erasmus students to get
Contonto	many of the above mentioned learning outcomes.
Contents	The project-based version of the course will cover many of the following subjects:
	Review on telecommunications and electromagnetic theory. Electric, magnetic,
	electromagnetic field. Electrical signals. Telecommunication systems. Wireless
	Equations. Frequency spectrum (HF, VHF, UHF, microwaves). Maxwell
	Equations. wave equations. Boundary conditions. Scalar and vector potentials. Fields
	Distribution and power. Poynting vector.
	conductive media, phase and group velocities, reciprocity. Perfection and refraction
	of planar wayas [Spall's law Freepol equations reflection and transmission
	coefficients normal and oblique incidence on perfect dielectric and lossy media
	standing wayes incidence on dielectric plates scattering]
	Transmission lines [complex and characteristic line resistance wave reflection]
	transmitted power adjustment standing wave Smith diagram] Microwave
	wayeguides [naralle] plated rectangular circular coaxial microstrin dielectric]
	Optical waveguides TE TM and TEM propagation modes Power and losses
	Rectangular and cylindrical cavities. Electromagnetic waves in free space.
	Introduction to antenna theory. Antenna and transmission line matching.
	Radiation mechanisms. Antenna characteristics, radiation diagrams, gain, bandwidth.
	quality factor. Theory of simple linear antennas. Analysis of antennas with assumed
	current distributions. Hertz dipole. Applications of electrically small antennas.
	Linear dipole antennas. Field and radiation pattern, directivity, gain, radiation
	resistance, active antenna height. Dipole $\lambda/2$.
	Traveling wave antennas.
	Loop antennas.
	Antennas above perfect ground. Mirroring and image theory.
	General analysis of the radiation field of any antenna. Applications.
	Antenna arrays. Rhombic antenna. Principles of antenna design. Applications.
	Linear arrays. Uniform linear arrays with small and large number of elements.
	Polynomial theory of linear arrays. Applications.
	Superdirective antennas. Phase detection. Methods of radiation pattern synthesis.
	Dolph-Chebyshev linear arrays. Composition of linear arrays with Fourier sums.
	Applications and examples of antenna analysis and synthesis. Antenna applications
	and measurements.
	Aperture antennas. Radiation from flat surfaces. Radiation from rectangular surfaces.
	Horn antennas. Parabolic reflector antennas. Horn-reflector antennas. Lens antennas.
	Passive reflectors.

	Input antenna resistance. Equivalent sources. Magnetic charges and currents. Voltage and current sources. Reciprocity theorem. Self-impedance of conductive antennas.
	Voltage induced on open-ended antenna by an incident field. Induced electromotive
	force method. Transmission and reception equivalent circuits. Dipole near field.
	systems and antenna noise temperature
	Dipole self-impedance. Antenna as terminal impedance. Asymmetric excitation of
	dipoles. Matching conditions and maximum transmitted power. Matching using stubs.
	Folded dipole. Mutual complex resistance between dipoles. Antenna array excitation
	impedance. Impedance of dipoles above perfect ground. Antenna feeding with
	appropriate currents. Yagi-Uda antennas. The antenna as a receiver. Equality of mutual complex resistances. Equality of transmission and reception radiation
	patterns. Equality of transmission and reception radiation
	transmission and reception antenna active heights. Active antenna surface. Received
	to transmitted power ratio.
	Transmission of waves in free space. Friis equation. Losses and maximum
	transmission distance. Radar equation. Propagation of electromagnetic waves in the
	or parallel polarization. Brewster angles, Ground wave, Space wave, Surface wave,
	Antennas elevated above ground level. Approximate relationship for propagation at
	very high frequencies. Near ground surface wave tilt and polarization.
	Spherical earth. Effects of the earth's curvature. Line-of-sight condition. Barrier
	Tropospheric propagation refraction wavaguiding southering Padio horizon
	Multiple routes. Intervals. Differential reception systems. Atmosphere attenuation.
	Critical frequency and ionosphere changes. Ionospheric propagation, refraction,
	reflection, scattering. Applications.
	Calculation of radio links. Over sharp obstacle links. Line-of-sight links. Above
	perfect ground links. Technical characteristics and practical applications of wireless
Course type	Project-based (exclusively)
Assessment	Final project evaluation. Blended learning using synchronous and asynchronous
	methods.
Bibliography	• C. Parini, S. Gregson, J. McCormick, D.J. van Rensburg, and T. Eibert, <i>Theory and</i>
	Edition) ISBN-10: 1839531282
	• ARRL, <i>The ARRL Antenna Book for Radio Communications</i> , American Radio
	Relay League, 2019 (24th edition), ISBN-10: 1625951116.
	• J. Volakis, Antenna Engineering Handbook, Mc Graw Hill, 2018 (5th edition),
	ISBN-10: 1259644695. • ID Kraus R I Marhefka and A S Khan Antennas and Wave Propagation Mc-
	Graw Hill India, 2017 (5th edition), ISBN-10: 9352606183.
	• R.J. Mailloux, Phased Array Antenna Handbook, Artech House, 2017 (3rd Edition),
	ISBN-10: 1630810290.
	• C.A. Balanis, Antenna Theory: Analysis and Design, Wiley, 2016 (4th edition), ISBN-10: 1118642066.

 W.L. Stutzman and G.A. Thiele, <i>Antenna Theory and Design</i>, Wiley, 2012 (3rd edition), ISBN-10: 0470576642. S.K. Das and A. Das, <i>Antenna and Wave Propagation</i>, Tata Mc-Graw Hill
 Education, 2012, ISBN-10: 1259097587. J. Carr and G. Hippisley, <i>Practical Antenna Handbook</i>, Mc Graw Hill, 2011 (5th)
edition), ISBN-10: 9780071639583.
• R.E. Collin, <i>Antennas and Radiowave Propagation</i> , Mc-Graw Hill, 1985, ISBN-10: 0070118086.
Delated to Window Communications
<u>Ketatea to wireless Communications</u>
• R.L. Haupt, Wireless Communication Systems: An Introduction, Wiley-IEEE Press,
2019, ISBN-10: 1119419174.
• R.W. Heath and A. Lozano, <i>Foundations of MIMO Communication</i> , Cambridge
University Press, 2018, ISBN-10: 0521762286.
• C. Beard and W. Stallings, Wireless Communication Networks and Systems,
Pearson, 2015, ISBN-10: 9780133594171.
• D. Tse and P. Viswanath, <i>Fundamentals of Wireless Communication</i> , Cambridge
University Press, 2005, ISBN-10: 0521845270.
• A. Goldsmith, Wireless Communications, Cambridge University Press, 2005,
ISBN-10: 0521837162.
• W. Stallings, <i>Wireless Communications and Networks</i> , Pearson, 2004 (2nd Edition),
ISBN-10: 9788132231561.
• T. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall,
2002 (2nd Edition), ISBN-10: 0130422320.

Course Title	Satellite Communications and Systems
Instructor	Prof. Ioannis Vardiambasis ivardia@hmu.gr
Study level	Bachelor or Master
ECTS	4
Prerequisite	Basic knowledge of telecommunication systems.
Learning	Satellites have the unique ability to provide coverage in large geographic areas and to
Outcomes	connect remote and inaccessible telecommunication nodes. Thus satellite networks are
	now an integral part of most telecommunications systems. In recent decades the
	technology of satellite systems is advancing constantly and the use of all kind of
	satellites for long distance communications is developing rapidly.
	Today, electronic engineers face the absolute necessity to have in depth knowledge of
	the satellite technology, communications and links, because satellite communications
	play an ever-increasing role in modern telecommunication systems. This course
	properly prepares students for a career in the rapidly evolving telecommunications
	industry.
	The aim of this course is to familiarize tomorrow's electronics/telecommunications
	engineers with the analysis of satellite communication systems and the design of
	satellite links. The course covers the total of the required theoretical and practical
	background. Upon successful completion of the course, students will have acquired the
	necessary knowledge and skills to:

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

	 + understand the structure of any satellite communications system, + understand the basic principles and concepts governing satellite communications, + understand the operation of satellite systems and the principles of modern telecommunications networks, + understand the design issues and options concerning satellite links, + have experience in the design and optimization of real telecommunication systems, which can be used for the analysis and design of new microwave and satellite radio links, + design and analyze satellite communication systems, + be familiar with various practical antenna devices, + have initial training in satellite link design, + be familiar with radio propagation models and modern techniques for digital modulation and voice-data information encoding, + be informed about the latest developments in the field of wireless and personal communication systems, + be familiar with the modern satellite technology, communications systems, assembly and subsystems, + supervise and maintain satellite communication systems, + understand the factors that degrade the quality of satellite wireless links and the methods to overcome this degradation, + evaluate the quality of services provided by satellite communications systems, + be familiar with the multiple access satellite networking techniques and the modern standards for satellite communications and mobile telephony systems. The course is at the core of the Electronic Engineer curriculum. Note: The project-based version of the course will help the Erasmus students to get many of the above mentioned learning outcomes.
Contents	The project-based version of the course will cover many of the following subjects: Configuration of a satellite communication system. Radio frequencies of satellite services. Motion, position and orbit of satellites. Satellite networks. Geosynchronous, geostatic, GEO, LEO satellites. Satellite segments. Basic features related to satellite link design [radio regulations, transmission/broadcasting types, line of sight, link power budget, refractive index, Fresnel zones, troposcatter links]. Electromagnetic wave propagation and the satellite radio channel. Radiation characteristics and types of satellite dishes. Parabolic antenna and targeting control. Noise measures. Signal noise in satellite systems. Space environment. Absorption, diffusion, refraction and depolarization of electromagnetic wave signals in the satellite channel. Effects of rainfall, noise and propagation medium on the satellite link power balance. Frequency reuse techniques. Channel configuration, modulation and coding. Analog techniques PM, FM. Digital communication techniques. Digital signal modulation. Custom filter analysis. Error possibility in digital communications. FSK, PSK, QPSK, DPSK, DQPSK, MSK modulations/encodings (with emphasis on demodulation, spectrum and error probability). Spectrum modulation techniques. Telecommunication satellite and ground station platform, configuration and subsystems (monitoring, control, position stabilization, orbit determination, propulsion, telemetry, communication, thermal control, power supply/generation). Satellite types. Earth stations. Receiver input. RE-filters and satellite signal frequency

	converters. Power amplifiers and low noise satellite signal amplifiers. Amplification non-linearity Effects of noise filtering frequency conversion and amplification on
	satellite system design. Analysis of error possibility in satellite systems.
	Methods of coding, detection and error correction in satellite systems. Rectangular,
	semi-rectangular, linear (Hamming, Golay, BCH, Reed-Solomon), circular and
	convolutional codes. Error checking, parity check, syndromes. Error correction.
	Spectrum control. Satellite channel capacity. Coding gain. Channel discrete model.
	Coding error possibility. State diagrams. Coding trees. Trellis chart. Coding systems
	evaluation.
	Communication payload. Channel and modulation type performance. Bit error rate in
	digital data transmission systems. Noise factor. Noise models (white, pink, Gaussian).
	Factors affecting satellite link reliability and availability. Space differential reception.
	Effects of rainfall, depolarization and neighboring satellite interference on satellite
	system performance.
	Study of satellite communication systems. Satellite link design based on ITU's
	specifications and recommendations. Applications.
	Multiple Access CSMA (Collision Ausidence CSMA (Collision Detection (signal to
	noise rotios multipath jamming) Fraquency Division Multiple Access System
	EDMA (with emphasis on ponlinear phenomena effects). Time Division Multiple
	$\Delta ccess$ System TDMA (with emphasis on synchronization carrier retrieval identity
	word detection and frame synchronization) Code division multiple access systems
	DS-CDMA and FH-CDMA (with emphasis on interpolation analysis).
	Satellite system protocols ALOHA, S-ALOHA, R-ALOHA. Services:
	telecommunication audio systems, telephony, analog TV, digital TV, direct to home
	broadcasts, SMATV, satellite news gathering, VSAT, meteorology, global
	atmospheric research program, geostationary meteorological satellites, sea
	navigation, Global Positioning System, differential GPS, mobile communications,
	Iridium, computer networks, fast internet, video on demand, multimedia services,
	video conferencing, telemedicine, geography, topography, GIS.
	Satellite installation and launch vehicles. Reliability of satellite communication
	systems.
Course type	Project-based (exclusively)
Assessment	methods.
Bibliography	• G. Maral, M. Bousquet, and Z. Sun, Satellite Communications Systems: Systems,
	Techniques and Technologies, Wiley, 2020 (6th Edition), ISBN-10: 1119382084.
	• T. Pratt and J.E. Allnut, Satellite Communications, Wiley, 2019 (3rd Edition),
	ISBN-10: 1119482178.
	• L.J. Ippolito, Satellite Communications Systems Engineering: Atmospheric Effects,
	Satellite Link Design and System Performance, Wiley, 2017 (2nd Edition), ISBN-
	10: 1119259371.
	• M.O. Kolawole, Satellite Communications Engineering, CRC Press, 2016 (2nd Edition) ISBN 10, 1128075252
	D Minoli, Innovations in Satellite Communications and Satellite Technology. The
	Industry Implications of DVR-S2X High Throughput Satellites Illtra HD M2M
	and IP Wiley 2015 ISBN-10: 1118984056

• M. Richharia, Mobile Satellite Communications: Principles and Trends, Wiley, 2014 (2nd Edition) JSDN 10: 1110008867
2014 (2nd Edition), ISBN-10: 1119998867.
• R. Cochetti, Mobile Satellite Communications Handbook, Wiley, 2014 (2nd
Edition), ISBN-10: 1118357027.
• K.N. Raja Rao, Satellite Communication: Concepts and Applications, PHI
Learning, 2013 (2nd Edition), ISBN-10: 8120347250.
• R.M. Gagliardi, <i>Satellite Communications</i> , Springer, 2012 (2nd Edition), ISBN-10:
9401097623.
• T.M. Braun, Satellite Communications Payload and System, Wiley-IEEE Press,
2012, ISBN-10: 0470540842.
• F. Gustrau, RF and Microwave Engineering: Fundamentals of Wireless
Communications, Wiley, 2012, ISBN-10: 1119951712.
• P. Fortescue, G. Swinerd, and J. Stark, <i>Spacecraft Systems Engineering</i> , Wiley,
2011 (4th Edition), ISBN-10: 047075012X.
• D.R. Cheruku, Satellite Communication, IK International Publishing, 2009, ISBN-
10: 9380026412.
• D. Roddy. Satellite Communications. McGraw-Hill 2006 (4th Edition). ISBN-10:
0071462988.
• A Fares Satellite Communications Engineering BookSurge Publishing 2006
ISBN 10: 1/10630056
ISDN-10, 1417037030.

Course Title	Scattering, Propagation & Radiation of Electromagnetic Waves
Instructor	Prof. Ioannis Vardiambasis ivardia@hmu.gr
Study level	Bachelor of Master
ECTS	4
Prerequisite	Basic knowledge of engineering electromagnetics (electromagnetic fields and waves, Maxwell equations, boundary conditions, boundary value problems, etc.)
Learning Outcomes	Aim of this course is the qualitative understanding and mathematical formalism of the concepts concerning the electromagnetic fields and the propagation, radiation and scattering of electromagnetic waves through their correlation with intelligible applications and phenomena, in order to create the necessary background, knowledge and experiences at the level of the advanced engineering electromagnetics and computing. Additional purpose is to develop the skills and abilities, which are necessary for the scientific and technical subject of the electronic and telecommunication engineer. Upon completion of the course the postgraduate students are expected to be able to: + understand the correlation between several types of sources and the corresponding fields' characteristics, + understand the concepts of vector field, electric field, Ampere's law, magnetic field, Faraday's law, Gauss' laws, induction, wave, interconnected existence of electric and magnetic field in case of time change, physical origin of electromagnetic waves, Maxwell's integral and differential equations for continuous and time-varying fields, propagation, radiation and scattering of electromagnetic waves and fields in space and time.

	+ understand the electrical properties of materials (conductive/dielectric,
	isotropic/anisotropic, homogeneous/inhomogeneous, dispersive/nondispersive,
	linear/nonlinear, time-constant/time-varying, simple/metamaterials),
	+ calculate differential (divergence, rotation) and integral quantities (flow, circulation)
	of fields in the main coordinate systems (Cartesian, cylindrical, spherical), as well as
	the electric and magnetic field, the corresponding potentials and the amounts of energy
	in given physical problems,
	+ elaborate on electromagnetic theory and Maxwell's equations,
	+ analyze and evaluate the technological applications concerning the broader field of
	electronic and telecommunication engineering, recognizing the presence and impact of
	electromagnetic field phenomena.
	+ formulate given time-varying electromagnetic problems into mathematical
	expressions of boundary value problems, through differential equations with
	appropriate initial and/or boundary conditions.
	+ handle simple and rather complex boundary value problems of electromagnetic field
	calculation using Maxwell equations, boundary conditions, auxiliary potentials and
	appropriate methods and techniques.
	+ systematically deal with electromagnetic boundary value problems using analytical
	and computational methods.
	+ understand the various phenomena of electromagnetic wave propagation radiation
	and scattering along with the corresponding quantities/concepts that characterize
	distinguish and categorize them
	+ apply the taught methods and techniques for the analysis of electromagnetic
	problems, the composition of proper solutions and the evaluation of appropriate
	alternatives
	The course is at the core of the Electronic/Telecommunications Engineer postgraduate
	curriculum.
	Note: The project-based version of the course will help the Erasmus students to get
	many of the above mentioned learning outcomes.
Contents	The project-based version of the course will cover many of the following subjects:
	Time-varying and time-harmonic electromagnetic fields (Maxwell's equations,
	constitutive parameters and relations, circuit-field relations, boundary conditions,
	power and energy, time-harmonic electromagnetic fields).
	Electrical properties of matter (dielectrics, polarization and permittivity; magnetics,
	magnetization and permeability; current, conductors and conductivity;
	semiconductors; superconductors; metamaterials; linear, homogeneous, isotropic and
	nondispersive media; AC variations in materials).
	Wave equation and its solutions (time-varying electromagnetic fields; time-harmonic
	electromagnetic fields; solutions to the wave equation in the rectangular, cylindrical
	and spherical coordinate systems).
	Wave propagation and polarization (Transverse Electromagnetic Modes; uniform
	plane waves in unbounded lossless and lossy media at principal axis and oblique
	angle; polarization).
	Reflection and transmission (Normal and oblique incidence in lossless media; lossy
	media; reflection and transmission of single slab, multiple layers and multiple
	interfaces; polarization characteristics on reflection; metamaterials).
	Auxiliary vector potentials; construction of solutions; radiation and scattering

	equations (vector potentials; construction of solutions; solution of the inhomogeneous
	vector potential wave equation; far-field radiation; radiation and scattering
	equations).
	Electromagnetic theorems and principles (duality theorem; uniqueness theorem;
	surface equivalence theorem (Huygens's principle); induction theorem; physical
	equivalent and physical optics equivalent: induction and physical equivalent
	approximations).
	Rectangular cross-section waveguides and cavities (rectangular waveguide;
	rectangular resonant cavities; hybrid LSE and LSM modes; partially filled
	waveguide; transverse resonance method; dielectric waveguide; artificial impedance
	surfaces; stripline; microstrip line; ridged waveguide).
	Circular cross-section waveguides and cavities (circular waveguide; circular cavity;
	Subarical transmission lines and cavities (construction of solutions; biconical
	transmission line: spherical cavity)
	Scattering (infinite line-source cylindrical wave radiation; plane wave scattering by
	planar surfaces; cylindrical wave transformations and theorems; scattering by circular
	cylinders; scattering by a conducting wedge; spherical wave orthogonalities,
	transformations, and theorems; scattering by a sphere).
	Integral equations and Method of Moments (integral equation method; electric and
	and scattering: Pocklington's wire radiation and scattering: Numerical
	Electromagnetics Code)
	Geometrical theory of diffraction (geometrical optics; straight edge diffraction at
	normal and oblique incidence; curved edge diffraction at oblique incidence;
	equivalent currents in diffraction; slope diffraction; multiple diffractions).
	Diffraction by wedge with impedance surfaces (impedance surface boundary
	conditions and reflection coefficients; Maliuzhinets impedance wedge solution;
	geometrical optics; surface wave terms; diffracted fields; surface wave transition field; computations)
	Green's Functions (Green's functions in engineering: Sturm–Liouville problems:
	two-dimensional Green's function in rectangular coordinates; Green's identities and
	methods; Green's functions of the scalar Helmholtz equation; dyadic Green's
	functions).
Course type	Project-based (exclusively)
Assessment	Final project evaluation. Blended learning using synchronous and asynchronous methods
Bibliography	• A S Khan and S K Mukerij <i>Electromagnetic Fields: Theory and Applications</i>
Diolography	CRC Press, 2020.
	• N. Ida, Engineering Electromagnetics, Springer, 2020 (4th Edition), ISBN-10:
	3030155560.
	• S. Balaji, <i>Electromagnetics Made Easy</i> , Springer, 2020, ISBN-10: 9811526575.
	• MS. Kao and CF. Chang, Understanding Electromagnetic Waves, Springer, 2020 ISBN 10: 2020457070
	• M Sadiku Flements of Flectromagnetics Oxford University Press 2018 (7th
	Edition) ISBN-10: 0190698616

• M. Nahvi and J. Edminister, <i>Schaum's Outline of Electromagnetics</i> , McGraw-Hill, 2018 (5th Edition) JSBN-10: 126012097X
• A Ishimaru Electromagnetic Wave Propagation Radiation and Scattering: From
Fundamentals to Applications Wiley-IEEE Press 2017 (2nd Edition) ISBN-10:
1118098811
• A.V. Osipov and S.A. Tretvakov, <i>Modern Electromagnetic Scattering Theory with</i>
Applications, Wiley, 2017, ISBN-10: 0470512385.
• D.H. Werner and Z.H. Jiang, <i>Electromagnetics of Body Area Networks: Antennas</i> ,
Propagation, and RF Systems, Wiley-IEEE Press, 2016, ISBN-10: 1119029465.
• E.F. Kuester and D.C. Chang, <i>Electromagnetic Boundary Problems</i> , CRC Press,
2015, ISBN-10: 1498730264.
• U. Inan, A. Inan, and R. Said, Engineering Electromagnetics and Waves, Pearson,
2014 (2nd Edition), ISBN-10: 0132662744.
• F. Ulaby and U. Ravaioli, Fundamentals of Applied Electromagnetics, Pearson,
2014 (7th Edition), ISBN-10: 0133356817.
• C.A. Balanis, Advanced Engineering Electromagnetics, Wiley, 2012 (2nd Edition),
ISBN-10: 0470589485.
• J.G. van Bladel, <i>Electromagnetic Fields</i> , Wiley-IEEE Press, 2007 (2nd Edition),
ISBN-10: 04/1263885.
• S.M. Wentworth, Applied Electromagnetics: Early Transmission Lines Approach, Wilow 2007, ISBN 10: 0470042575
• R K Wangsness Electromagnetic Fileds Wiley 2007 (2nd Edition) ISBN-10:
0471811866
• S.M. Wentworth, Fundamentals of Electromagnetics with Engineering
Applications, Wiley, 2006, ISBN-10: 9780470105757.
• R.E. Collin, Field Theory of Guided Waves, Wiley-IEEE Press, 1990 (2nd Edition),
ISBN-10: 0879422378.
• D. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989 (2nd Edition),
ISBN-10: 0201128195.
Related scientific journals
• IEEE Transactions on Microwave Theory and Techniques (IF=3.176)
• IEEE Microwave and Wireless Components Letters (IF=2.169)
• IET Microwaves, Antennas and Propagation (IF=1.739)
 Microwave and Optical Technology Letters, Wiley (IF=0.948)
• IEEE Transactions on Antennas and Propagation (IF=4.13)
• IEEE Antennas and Wireless Propagation Letters (IF=3.448)
• IEEE Antennas and Propagation Magazine (IF=3.007)
 International Journal of Antennas and Propagation (IF=1.3/8) MDDI Electropics

Course Title	Electromagnetic Compatibility
Instructor	Ass. Prof. Christos Nikololoulos cnikolo@hmu.gr
Study level	Bachelor or Master
ECTS	4

Prerequisite	Basic knowledge of electromagnetics.
Learning	The course covers the theoretical and practical background required for:
Outcomes	electromagnetic theory and its applications, electromagnetic compatibility (EMC)
	principles, electromagnetic interference (EMI) and methods for suppressing EMI
	effects, EMC measurements, analysis and design of electromagnetically compatible
	devices and systems.
	Upon successful completion of the course the students will be able to:
	+ have in-depth knowledge of electromagnetic theory principles,
	+ be able to present uniformly the theory of propagation, scattering and radiation of
	electromagnetic waves, so that the electromagnetic behavior of practical
	telecommunication systems can be understood,
	+ explain and present in a comprehensive way the theory of electromagnetic
	compatibility,
	+ be extremely familiar with possible electromagnetic effects-interference in devices
	and systems,
	+ be informed about the regulations and the electromagnetic compatibility standards
	currently applicable,
	+ measure electromagnetic interference in various cases,
	+ design circuits and devices free from electromagnetic interference
	The course is at the core of the Electronic Engineer curriculum
	Note: The project-based version of the course will help the Frasmus students to get
	many of the above mentioned learning outcomes
	many of the above mentioned rearming outcomes.
Contents	The project-based version of the course will cover many of the following subjects:
	Electromagnetic Compatibility (EMC) overview. Definitions. Examples of EMC
	problems. Noise sources (natural and man-made sources). General methods for
	solving interference problems and complying with EMC requirements. EMC
	regulations and tests.
	Basic concepts of electromagnetism and their use in EMC (ferromagnetic materials).
	Maxwell's equations from the EMC point of view (Maxwell, Poisson and Laplace
	equations). Near and far field approaches and energy flow. The near field, the far field
	and the energy flow around small wire and small loop antennas. Fields of high and
	small impedance. Reaction fields.
	Electromagnetic waves in various media (refractive index, characteristic impedance
	of dielectrics). Near field impedance. The importance of the impedance concept. The impedance in front of a hour dama surface $(1/2)$ dielectric windows $1/4$ and $1/2$ lowers)
	number M_{2} in a boundary surface (M_{2} diffective windows, M_{4} and M_{2} layers).
	propagation in good conductors. Internal resistance of conductors Diffusion
	Maxwell's equations in integral form Faraday and Ampere laws Electric fields in
	conductors
	Illustrative examples in FMC Interference in small loops Interpretation of
	measurements at various distances Capacitive and inductive coupling Transient
	switching phenomena (transformer feeding, transformer's nower supply interruption
	early time transitions).

	 Input resistance of materials with losses. TEM wave incidence on boundary surfaces. TEM wave propagation. A first approximation of the transmission factor. Rereflection effects. Shielding efficiency. Decibels and Nepers. Multi-layer media reflection coefficient. Absorber design and affecting factors. Absorber performance at various frequencies. Real absorber examples. Transmission lines and waveguides. Impedance and phase shift of ideal lines. Characteristic impedance of lines with losses. Voltage and current reflection coefficients. Short-circuited transmission line input impedance. Coupling between transmission lines. Inductively coupled directional couplers. Short-length line coupling. Transmission line coupling and the corresponding mathematical framework. Coupling of shielding currents with signal wires. Waveguides and resonators. Cutoff frequency and attenuation constant. Effectiveness of apertures'/openings' shielding. Resonator tuning. Shielding theory and practical applications. Static or almost static field protection. Magnetostatic protection. Superconductive materials shielding. Almost static magnetic field shielding. Plane wave or transmission line shielding models. Extensions of plane wave theory to non-ideal situations. Shielding theories relationship with practical applications. Apertures, windows and thin conductive films. Alternative ways to describe shielding quality. Cables and connectors. Conclusions and comments about earthing/grounding. Spectral analysis and antenna theory in EMC. Basic principles. Harmonic distortion. Intermodulation distortion or mixing. Spectral analysis. Fourier series. Fourier series of pulse trains. Fourier transforms. Fast Fourier spectrum approach. Interference bandwidth Antonne and readiction. Differential mode and acommon. Magnetostatic coil voltage noise. Fourier spectrum approach.
	Antenna general characteristics (field, radiation and power patterns, directivity, gain, radiation resistance, effective area). Slot antennas and apertures. Radiation field estimation and measurement. Loop radiation (loops with Z <zo or="" z="">Zo impedance). Radiated field estimation (basic calculation, intensity calculation spreadsheet). Common-mode cable radiation. Computer codes for radiation estimation. Broadband antennas. Electromagnetic field generation for EMC tests. Crawford cell. GTEM cell. Reverberation chambers.</zo>
	Coupling calculation examples. Earthing, security and signal grounding. Cable grounding and pigtails. Single and multiple shielding housings' grounding. Passive components (conductors, resistors, capacitors and coils). Filters. Isolation and supression. Isolation techniques (balanced or compensated circuits, transformers, common-mode suppression coils, optical isolators and optical fibers. Suppression techniques. Design of electromagnetically compatible circuits. EMC system design.
Course type	Project-based
Assessment	Final project evaluation. Blended learning using synchronous and asynchronous methods.
Bibliography	• LearnEMC LLC, T. Hubing, and N. Hubing, <i>Study Guide for the iNARTE Electromagnetic Compatibility (EMC/EMI) Certification Exam – 2020, 2020.</i>

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

• C. Kathalay, A Practical Approach to Electromagnetic Compatibility: With an
Introduction to CE Marking, 2020, ISBN-13: 979-8665728742.
• H. Zhang, Y. Zhang, C. Huangm Y. Yuan, and L. Cheng, Spacecraft
Electromagnetic Compatibility Technologies, Springer, 2020, ISBN-10:
9811547815.
• M. Van Helvoort and M. Melenhorst, EMC for Installers: Electromagnetic
Compatibility of Systems and Installations, CRC Press, 2018, ISBN-10:
1498702481.
• A. Ishimaru, <i>Electromagnetic Wave Propagation, Radiation, and Scattering: From</i>
Fundamentals to Applications, Wiley-IEEE Press, 2017 (2nd Edition), ISBN-10:
1118098811.
• T. Williams, <i>EMC for Product Designers</i> , Newnes, 2016 (5th Edition), ISBN-10:
0081010168.
• D.A. Weston, <i>Electromagnetic Compatibility: Methods, Analysis, Circuits, and</i>
Measurement, CRC Press, 2016 (3rd Edition), ISBN-10: 148229950X.
• P.G. André and K. Wyatt, EMI Troubleshooting Cookbook for Product Designers,
Scitech Publishing, 2014, ISBN-10: 1613530196.
• H.W. Ott, <i>Electromagnetic Compatibility Engineering</i> , Wiley, 2009, ISBN-10:
0470189304.
• C.R. Paul, Introduction to Electromagnetic Compatibility, Wiley-Interscience, 2006
(2nd Edition), ISBN-10: 0471755001.
• V. Prasad Kodali, Engineering Electromagnetic Compatibility: Principles,
Measurements, Technologies, and Computer Models, Wiley-IEEE Press, 2001 (2nd
Edition), ISBN-10: 0780347439.
• P. Chatterton and M. Houlden, "EMC: Electromagnetic Theory to Practical
Design", Wiley, 1992, ISBN-10: 047192878X.

Course Title	Microwave Communications
Instructor	Prof. Ioannis Vardiambasis ivardia@hmu.gr
Study level	Bachelor or Master
ECTS	4
Droroquisito	Basic knowledge of engineering electromagnetics (electromagnetic fields and waves,
Frerequisite	Maxwell equations, boundary conditions, boundary value problems, etc.)
Learning	Microwaves are widely used in radar (shipping, meteorology, air traffic control),
Outcomes	terrestrial and satellite telecommunication links, medicine (tomography,
	hyperthermia), astrophysics (star observation), physics (spectroscopy, acceleration),
	industry, in everyday life (microwave ovens, antennas, vehicle speed measurement).
	On the other hand, the future of wireless communications (5G, MIMO) is based on
	millimeter waves. Therefore, familiarity of the electronic/telecommunication engineers
	with microwave theory, millimeter waves and their applications is necessary. This
	course properly prepares students for a career in the rapidly evolving
	telecommunications industry.

	The aim of this course is to familiarize electronic/telecommunication engineers with
	the technology of microwave and millimeter waves and their applications, in order to
	fully understand the operation of wired and wireless telecommunication systems.
	Upon completion of this course students will have acquired the necessary knowledge
	and skills, the appropriate tools for dealing with practical applications related to
	waveguides and antennas, as well as the experience to design and optimize real
	telecommunication systems, in order to:
	+ select the most appropriate propagation mean and spectrum part for each
	telecommunication system
	\pm analyze any transmission line and propagation mean
	+ analyze any transmission line and propagation mean,
	means it is using
	L analyze and design wired and wireless tolecommunication systems according to the
	+ analyze and design when and whereas telecommunication systems according to the
	heads,
	+ be able to supervise and maintain wired and wireless telecommunication systems,
	and
	+ design telecommunication systems using different transmission lines.
	Upon successful completion of the course, the students will:
	+ understand the theory of microwaves and electromagnetic wave propagation in a
	unified manner, in order to use them for the analysis and design of wireless
	telecommunications links,
	+ familiarize with the various phenomena at microwave and millimeter-wave
	frequencies,
	+ understand the behavior of any waveguide and of the microwave energy transmission
	over distance (point-to-point transmission and reception),
	+ understand the operation of various elements, circuits and devices at microwave and
	millimeter frequencies,
	+ familiarize with active and passive microwave components of modern
	telecommunication systems,
	+ gain experience in measuring the basic characteristics and parameters of microwave
	devices,
	+ familiarize with various waveguiding and propagation layouts of practical interest,
	in order to compare their characteristics (advantages/disadvantages), deciding which is
	the most appropriate for each practical application,
	+ be informed about the latest developments in the field of wired and wireless
	telecommunications,
	+ gain experience in the design of components (transmission lines, waveguides, power
	generators, amplifiers), circuits and systems,
	+ gain experience in the analysis of microwave networks,
	+ gain experience in designing and optimizing real telecommunication systems, which
	can be used in the analysis and design of new microwave, millimeter and optical
	systems.
	The course is at the core of the Electronic Engineer curriculum.
	Note: The project-based version of the course will help the Erasmus students to get
	many of the above mentioned learning outcomes.
Contents	The project-based version of the course will cover many of the following subjects:
	The project cubed version of the course will cover many of the following subjects.

by the department of Electronic Engineering of HMU -2023-24

Review of electromagnetic theory (description of electromagnetic phenomena, Maxwell equations, boundary conditions, electromagnetic field power and energy, planar electromagnetic waves, propagation and attenuation of electromagnetic waves, polarization). Wired and wireless communications.

Transmission line theory. Transverse and sinusoidal time-varying waves in transmission lines. Characteristic impedance and complex resistance in transmission lines. Smith chart. Standing waves in transmission lines without losses. Propagation constant and speed in transmission lines. Load matching in transmission lines using $\lambda/4$ transformers, one or two short-circuited stubs, or non-uniform transmission lines. Non-periodic phenomena in transmission lines. Coupled transmission line analysis.

Wired transmission line types (two-wire or coaxial lines). Phase and amplitude distortion. Balanced and unbalanced lines. Phone network. Phase instability, cross-talk, impact noise, structured cabling.

Waveguiding. Guided waves and waveguide modes. Parallel-plate waveguide. Description of waves. Separation of variables method. TE, TM, TEM modes. Radial description of wave propagation. Propagation and waveguide losses.

Waveguides of rectangular cross section. Wave equation solution. Cutoff conditions. Boundary conditions. Field components in Cartesian coordinates. TM and TE modes. Excitation, characteristic resistance and attenuation of rectangular waveguide modes. Rectangular waveguide resonator.

Waveguides of circular cross section. Wave equation solution. Cutoff conditions. Boundary conditions. Field components in cylindrical coordinates. TM and TE modes. Excitation, characteristic resistance and attenuation of circular waveguide modes. Polarization. Circular waveguide resonator.

Coaxial waveguide. TEM, TM and TE modes.

Microstrip and stripline. Radial and field description of a dielectric layer waveguide. Dielectric layer and dielectric strip. Graded-index strips.

Uniform and non-uniform circular optical fiber.

Special types of waveguides. Propagation in lines of parallel conductors. Mode excitation.

Dielectric and magnetic materials. Electron motion in ferrites. Magnetization equation. Magnetic susceptibility tensor. Wave propagation in ferrites. Faraday rotation. Ferritic microwave elements. Gyrotron. Isolator. Circulator. YIG filter. Mixing materials with different ε , μ . Waveguiding in rectangular waveguides containing strips of material (ε , μ).

Non-linear waveguides and waveguides with discontinuities [propagation in a circular section of a rectangular waveguide, propagation in a rectangular waveguide with helical twist, cylindrical small poles with inductive or capacitive behavior in rectangular waveguides, probes]. Waveguide technical characteristics [metal waveguides, optical fibers, flanges, additional elements of waveguide structures, excitation, resonators, filters].

Analysis of microwave circuits [S-parameters, power, efficiency]. Description of signals in microwave circuits. Microwave multiport networks. Scattering matrices. Bidirectional and symmetrical multiport networks. Magic T coupler. Multiport networks without losses. Directional couplers. Power dividers. Other couplers. Methods of microwave network analysis.

	Microwave resonant circuits. Microwave filters. Integrated microwave circuits
	[striplines, microstrips, slotlines, coplanar lines, hybrid MICs]. Passive microwave
	components [design of lumped resistors-capacitors-inductors, circuits with lumped
	loads]. Waveguide matching [waveguide resistance, measurement of line resistance at
	any point, load resistance computation].
	Electron beam interaction with electromagnetic waves. High-power microwave
	sources [vacuum tubes, operating limits, klystron, magnetron, traveling-wave tube
	(TWT), gyrotron].
	Low-power microwave sources. Semiconductor and solid-state devices [bipolar
	transistors, microwave transistors, field-effect transistors (FETs), semiconductor
	oscillators, oscillator modes with electron transfer effects]. Microwave mixing diodes.
	Tunnel diodes. Gunn diodes. IMPATT diodes. Masers.
	Microwave communications [microwave circuits, terminal equipment, filters, terminal
	transceivers and repeaters].
	Microwave applications [diagnostic and therapeutic medicine, industrial
	measurements, speed measurements, ovens and thermal devices].
	Biological effects of microwaves [radiation limits, biological phenomena, dielectric
	properties of the human body, electromagnetic environment].
	Millimeter wave communications and applications.
Course type	Project-based (exclusively)
Assessment	Final project evaluation. Blended learning using synchronous and asynchronous
	methods.
Bibliography	• A.S. Khan and S.K. Mukerji, <i>Electromagnetic Fields: Theory and Applications</i> ,
	CRC Press, 2020.
	• J.P. Dunsmore, Handbook of Microwave Component Measurements: With
	Advanced VNA Techniques, Wiley, 2020 (2nd Edition), ISBN-10: 1119477131.
	• K. Kuang and R. Sturdivant, RF and Microwave Microelectronics Packaging II,
	Springer, 2017, ISBN-10: 3319516965.
	• I. Robertson, N. Somjit, and M. Chongcheawchamnan, <i>Microwave and Millimetre-</i>
	Wave Design for Wireless Communications, Wiley, 2016, ISBN-10: 1118917219.
	• S. Mumtaz, J. Rodriguez, and L. Dai, mmWave Massive MIMO: A Paradigm for
	5G, Academic Press, 2016, ISBN-10: 0128044187.
	• KW. Yeom, Microwave Circuit Design: A Practical Approach Using ADS,
	Pearson, 2015.
	• A.A. Behagi, <i>RF and Microwave Circuit Design: A Design Approach Using ADS</i> ,
	Techno Search, 2015, ISBN-10: 0996446613.
	• T.S. Rappaport, R.W. Heath, R.C. Daniels, and J.N. Murdock, <i>Millimeter Wave</i>
	Wireless Communications, Pearson, 2014, ISBN-10: 0132172283.
	• A.I. Kozlov, L.P. Ligthart, and A.I. Logvin, <i>Mathematical and Physical Modelling</i>
	of Microwave Scattering and Polarimetric Remote Sensing: Monitoring the Earth's
	Environment Using Polarimetric Radar: Formulation and Potential Applications,
	Springer, 2014, ISBN-10: 9401739110.
	• R. Sturdivant, Microwave and Millimeter-Wave Electronic Packaging, Artech
	House, 2014, ISBN-10: 1608076970.
	• R. Garg, I. Bahl, and M. Bozzi, <i>Microstrip Lines and Slotlines</i> , Artech House, 2013
	(3rd Edition), ISBN-10: 1608075354.

• B. Razavi, <i>RF Microelectronics</i> , Pearson Education Ltd, 2013 (2nd Edition), ISBN: 1292024720
 C.A. Balanis, Advanced Engineering Electromagnetics, Wiley, 2012 (2nd Edition),
ISBN-10: 0470589485.
• U.L. Rohde and M. Rudolph, <i>RF and Microwave Circuit Design for Wireless Communications</i> , Wiley, 2012 (2nd Edition), ISBN: 1118431405.
• A. Georgiadis, H. Rogier, L. Roselli and P. Arcioni, <i>Microwave and Millimeter</i>
Wave Circuits and Systems: Emerging Design, Technologies and Applications, Wiley, 2012, ISBN-10: 1119944945.
• D.M. Pozar, <i>Microwave Engineering</i> , Wiley, 2011 (4th Edition), ISBN-10:
04/0631554.
• KC. Huang and Z. Wang, <i>Millimeter Wave Communication Systems</i> , Wiley-IEEE, 2011, ISBN-10: 0470404620.
• M. Golio, <i>RF and Microwave Handbook</i> , CRC Press, 2008 (2nd Edition), ISBN-10: 0849372178.
• J.G. van Bladel, <i>Electromagnetic Fields</i> , Wiley-IEEE Press, 2007 (2nd Edition), ISBN-10: 0471263885.
• T.S. Laverghetta, <i>Microwaves and Wireless Simplified</i> , Artech House, 2006 (2nd Edition), ISBN-10: 1580539432.
• D.K. Misra, Radio-Frequency and Microwave Communication Circuits: Analysis
and Design, Wiley-Interscience, 2004 (2nd Edition), ISBN-10: 9780471478737.
• W.F. Egan, <i>Practical RF System Design</i> , whey- IEEE, 2003, ISBN-10: 0471200239.
• R.E. Collin, <i>Foundations for Microwave Engineering</i> , Wiley-IEEE Press, 2001 (2nd Edition), ISBN-10: 0780360311.
• K. Chang, <i>RF and Microwave Wireless Systems</i> , Wiley-Interscience, 2000, ISBN-10: 0471351997.
• T.S. Laverghetta, <i>Microwave Materials and Fabrication Techniques</i> , Artech House, 2000 (3rd Edition), ISBN: 1580530648.
• B.Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and
M. Thumm, <i>Theory of Nonuniform Waveguides – The Cross-Section Method</i> , IEE, 1998, ISBN: 085296918X.
• R.G. Winch, <i>Telecommunication Transmission Systems</i> , McGraw Hill, 1998 (2nd Edition) ISBN 10: 007070070X
• P Vizmuller <i>RF Design Guide: Systems Circuits and Equations</i> Artech House
1995, ISBN: 0890067546.
• G. Roussy and J.A. Pearce, Foundations and Industrial Applications of Microwaves
and Radio Frequency Fields – Physical and Chemical Processes, Wiley, 1995, ISBN-10: 0471938491
• ARRL, <i>The ARRL UHF/Microwave Projects Manual – Vol. 1</i> , ARRL, 1994, ISBN:
U8/2594491. • S. Pamo, J.P. Whinnery, and T.V. Duzer, Fields and Ways, in Communication
<i>Electronics</i> , Wiley, 1994 (3rd Edition). ISBN-10: 0471585513.
• G.H. Bryant, <i>Principles of Microwave Measurements</i> , IET, 1993 (Revised Edition).
ISBN: 0863412963.
• B.L. Smith and MH. Carpentier, <i>The Microwave Engineering Handbook – Vol. 1:</i>
Microwave Components, Van Nostrand Reinhold, 1993, ISBN-10: 0442315880.

• B.L. Smith and MH. Carpentier, <i>The Microwave Engineering Handbook – Vol. 2:</i>
(2009th Edition), ISBN 10: 1441901140.
• B. Smith and M.H. Carpentier, <i>The Microwave Engineering Handbook – Vol. 3:</i>
<i>Microwave Systems and Applications</i> , Springer, 1992 (1993rd Edition), ISBN-10: 041245680X.
• D.A. Olver, <i>Microwave and Optical Transmission</i> , Wiley, 1992, ISBN-10: 047193478X.
• S.F. Mahmoud, <i>Electromagnetic Waveguides: Theory and Applications</i> , IET, 1991, ISBN 10: 0863412327
 R.E. Collin, <i>Field Theory of Guided Waves</i>, Wiley-IEEE Press, 1990 (2nd Edition),
ISBN-10: 0879422378.
• A.E. Fantom, <i>Radio Frequency and Microwave Power Measurement</i> , IET, 1990, ISBN-10: 0863411207.
• T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave Passive Structures Wiley Interscience 1989 ISBN 10: 9780471625636
 N. Marcuvitz, Waveguide Handbook, IET, 1986, ISBN-10: 0863410588.

Course Title	Microwave-Millimeter Wave Communications & Antennas
Instructor	Prof. Ioannis Vardiambasis ivardia@hmu.gr
Study level	Bachelor or Master
ECTS	4
Prerequisite	Basic knowledge of engineering electromagnetics (electromagnetic fields and waves, Maxwell equations, boundary conditions, boundary value problems, etc.)
Learning	Microwaves are widely used in radar (shipping, meteorology, air traffic control),
Outcomes	terrestrial and satellite telecommunication links, medicine (tomography,
	hyperthermia), astrophysics (star observation), physics (spectroscopy, acceleration),
	industry, in everyday life (microwave ovens, antennas, vehicle speed measurement).
	On the other hand, the future of wireless communications (5G, MIMO) is based on
	minimeter waves. Therefore, familiarity of the electromic/telecommunication engineers
	with incrowave theory, infinitely waves and then applications is necessary. The
	telecommunication systems creates a growing demand for telecommunication
	engineers with (a) very good background on the theory of antennas and electromagnetic
	wave propagation and (b) special knowledge and experience in modern wireless
	systems.
	This course properly prepares postgraduate students for a career in the rapidly evolving
	telecommunications industry. This course aims (a) to familiarize
	electronic/telecommunication engineers with the technology of microwave and
	millimeter waves and their applications, in order to fully understand the operation of
	wired and wireless telecommunication systems, and (b) to get postgraduate students
	acquainted with the principles of antenna theory and electromagnetic wave

by the department of Electronic Engineering of HMU -2023-24

propagation, in order to use them during analysis and design of wireless telecommunication links.

Upon successful completion of this course postgraduate students will have acquired the necessary knowledge and skills, along with the appropriate tools for dealing with practical applications related to waveguides, antennas, and propagation models, as well as the experience to design and optimize real microwave/millimeter-wave devices, antennas, and telecommunication systems. More specifically students will be able to: + select the most appropriate propagation mean and spectrum part for each telecommunication system,

+ analyze any transmission line and propagation mean,

+ evaluate the performance of telecommunication systems based on the propagation means it is using,

+ analyze and design wired and wireless telecommunication systems according to the needs,

+ be able to supervise and maintain wired and wireless telecommunication systems,

+ design telecommunication systems using different transmission lines,

+ understand the theory of microwaves and electromagnetic wave propagation in a unified manner, in order to use them for the analysis and design of wireless telecommunications links,

+ familiarize with the various phenomena at microwave and millimeter-wave frequencies,

+ understand the behavior of any waveguide and of the microwave energy transmission over distance (point-to-point transmission and reception),

+ understand the operation of various elements, circuits and devices at microwave and millimeter frequencies,

+ familiarize with active and passive microwave components of modern telecommunication systems,

+ measure the basic characteristics and parameters of microwave devices,

+ familiarize with various waveguiding and propagation layouts of practical interest, in order to compare their characteristics (advantages/disadvantages), deciding which is the most appropriate for each practical application,

+ be informed about the latest developments in the field of wired and wireless telecommunications,

+ design of components (transmission lines, waveguides, power generators, amplifiers), circuits and systems,

+ analyze microwave networks,

+ design and optimize real telecommunication systems, which can be used in the analysis and design of new microwave, millimeter and optical systems,

+ understand electromagnetic theory and its applications to antennas and transmission of electromagnetic signals carrying information,

+ understand the theory of antennas and electromagnetic wave propagation in a uniform way, in order to use them in the analysis and design of wireless telecommunications,

+ describe the basic mechanisms of radio wave propagation and understand the interaction of electromagnetic waves with the environment,

+ be aware of the wave propagation phenomena caused in the real environment and the measurement methods used in practice,

	 + calculate and measure the basic antenna parameters and characteristics (eg radiated power, radiation intensity, directivity, gain, radiation resistance), + compare antenna characteristics (advantages/disadvantages), deciding which is the most suitable antenna for each practical application, + perform antenna and electromagnetic radiation measurements,
	 + familiarize with various practical antenna devices, + calculate the radiation diagram of an antenna, when its current distribution is known, + evaluate propagation models and select the appropriate model for calculating losses in a telecommunications link,
	 + prepare radio coverage studies, + be informed about the latest developments in the field of wireless and personal communication systems,
	+ analyze and design wireless telecommunication systems according to the respective needs,
	+ be ready to supervise and maintain wireless telecommunications systems. The course is at the core of the Electronic/Telecommunications Engineer postgraduate curriculum.
	Note: The project-based version of the course will help the Erasmus students to get many of the above mentioned learning outcomes.
Contents	The project-based version of the course will cover many of the following subjects: Review of electromagnetic theory. Electric, magnetic, electromagnetic fields. Description of electromagnetic phenomena. Maxwell's equations. Wave equations. Boundary conditions. Electromagnetic field power and energy. Poynting vector. Scalar and vector potentials. Fields of sinusoidal time change. Planar electromagnetic waves [polarization, wave propagation in conductive and non-conductive media, phase and group velocities, reciprocity]. Reflection and refraction of planar waves [Snell's law, Fresnel equations, reflection and transmission coefficients, normal and oblique incidence on perfect dielectric and lossy media, standing waves, incidence on dielectric plates, scattering]. Propagation and attenuation of electromagnetic waves. Polarization. Electromagnetic waves in free space. Transmission line theory. Transverse and sinusoidal time-varying waves in transmission lines. Characteristic impedance and complex resistance in transmission lines. Smith chart. Standing waves in transmission lines without losses. Propagation constant and speed in transmission lines. Load matching in transmission lines using $\lambda/4$ transformers, one or two short-circuited stubs, or non-uniform transmission lines. Non-periodic phenomena in transmission lines. Coupled transmission line analysis. Wired transmission line types (two-wire or coaxial lines). Phase and amplitude distortion. Balanced and unbalanced lines. Phone network. Phase instability, cross- talk, impact noise, structured cabling. Waveguiding. Guided waves and waveguide modes. Parallel-plate waveguide. Description of waves propagation. Propagation and waveguide losses. Waveguides of rectangular cross section. Wave equation solution. Cutoff conditions. Boundary conditions. Field components in Cartesian coordinates. TM and TE modes. Excitation, characteristic resistance and attenuation of rectangular waveguide modes. Rectangular waveguide resonator.

by the department of Electronic Engineering of HMU -2023-24

Waveguides of circular cross section. Wave equation solution. Cutoff conditions. Boundary conditions. Field components in cylindrical coordinates. TM and TE modes. Excitation, characteristic resistance and attenuation of circular waveguide modes. Polarization. Circular waveguide resonator. Coaxial waveguide. TEM, TM and TE modes. Microstrip and stripline. Radial and field description of a dielectric layer waveguide. Dielectric layer and dielectric strip. Graded-index strips. Uniform and non-uniform circular optical fiber. Special types of waveguides. Propagation in lines of parallel conductors. Mode excitation. Dielectric and magnetic materials. Electron motion in ferrites. Magnetization equation. Magnetic susceptibility tensor. Wave propagation in ferrites. Faraday rotation. Ferritic microwave elements. Gyrotron. Isolator. Circulator. YIG filter. Mixing materials with different ε , μ . Waveguiding in rectangular waveguides containing strips of material (ε , μ). Non-linear waveguides and waveguides with discontinuities [propagation in a circular section of a rectangular waveguide, propagation in a rectangular waveguide with helical twist, cylindrical small poles with inductive or capacitive behavior in rectangular waveguides, probes]. Waveguide technical characteristics [metal waveguides, optical fibers, flanges, additional elements of waveguide structures, excitation, resonators, filters]. Analysis of microwave circuits [S-parameters, power, efficiency]. Description of signals in microwave circuits. Microwave multiport networks. Scattering matrices. Bidirectional and symmetrical multiport networks. Magic T coupler. Multiport networks without losses. Directional couplers. Power dividers. Other couplers. Methods of microwave network analysis. Microwave resonant circuits. Microwave filters. Integrated microwave circuits [striplines, microstrips, slotlines, coplanar lines, hybrid MICs]. Passive microwave components [design of lumped resistors-capacitors-inductors, circuits with lumped loads]. Waveguide matching [waveguide resistance, measurement of line resistance at any point, load resistance computation]. Electron beam interaction with electromagnetic waves. High-power microwave sources [vacuum tubes, operating limits, klystron, magnetron, traveling-wave tube (TWT), gyrotron]. Low-power microwave sources. Semiconductor and solid-state devices [bipolar transistors, microwave transistors, field-effect transistors (FETs), semiconductor oscillators, oscillator modes with electron transfer effects]. Microwave mixing diodes. Tunnel diodes. Gunn diodes. IMPATT diodes. Masers. Microwave communications [microwave circuits, terminal equipment, filters, terminal transceivers and repeaters]. applications [diagnostic and therapeutic medicine, Microwave industrial measurements, speed measurements, ovens and thermal devices]. Biological effects of microwaves [radiation limits, biological phenomena, dielectric properties of the human body, electromagnetic environment]. Millimeter wave communications and applications. Review on telecommunications. Electrical signals. Telecommunication systems. Wired and wireless communications. Frequency spectrum (HF, VHF, UHF,

Description of courses offered for Erasmus students (in English) by the department of Electronic Engineering of HMU -2023-24

microwaves). Introduction to antenna theory. Antenna and transmission line matching. Radiation mechanisms. Antenna characteristics, radiation diagrams, gain, bandwidth, quality factor. Theory of simple linear antennas. Analysis of antennas with assumed current distributions. Hertz dipole. Applications of electrically small antennas. Linear dipole antennas. Field and radiation pattern, directivity, gain, radiation resistance, active antenna height. Dipole $\lambda/2$. Traveling wave antennas. Loop antennas. Antennas above perfect ground. Mirroring and image theory. General analysis of the radiation field of any antenna. Applications. Antenna arrays. Rhombic antenna. Principles of antenna design. Applications. Linear arrays. Uniform linear arrays with small and large number of elements. Polynomial theory of linear arrays. Applications. Superdirective antennas. Phase detection. Methods of radiation pattern synthesis. Dolph-Chebyshev linear arrays. Composition of linear arrays with Fourier sums. Applications and examples of antenna analysis and synthesis. Antenna applications and measurements. Aperture antennas. Radiation from flat surfaces. Radiation from rectangular surfaces. Horn antennas. Parabolic reflector antennas. Horn-reflector antennas. Lens antennas. Passive reflectors. Input antenna resistance. Equivalent sources. Magnetic charges and currents. Voltage and current sources. Reciprocity theorem. Self-impedance of conductive antennas. Voltage induced on open-ended antenna by an incident field. Induced electromotive force method. Transmission and reception equivalent circuits. Dipole near field. Bandwidth. Receiving antennas. Antenna polarization. Noise in telecommunication systems and antenna noise temperature. Dipole self-impedance. Antenna as terminal impedance. Asymmetric excitation of dipoles. Matching conditions and maximum transmitted power. Matching using stubs. Folded dipole. Mutual complex resistance between dipoles. Antenna array excitation impedance. Impedance of dipoles above perfect ground. Antenna feeding with appropriate currents. Yagi-Uda antennas. The antenna as a receiver. Equality of mutual complex resistances. Equality of transmission and reception radiation patterns. Equality of transmission and reception self-impedances. Equality of transmission and reception antenna active heights. Active antenna surface. Received to transmitted power ratio. Transmission of waves in free space. Friis equation. Losses and maximum transmission distance. Radar equation. Propagation of electromagnetic waves in the earth environment. Ground reflection of obliquely incident plane waves with vertical or parallel polarization. Brewster angles. Ground wave. Space wave. Surface wave. Antennas elevated above ground level. Approximate relationship for propagation at very high frequencies. Near ground surface wave tilt and polarization. Spherical earth. Effects of the earth's curvature. Line-of-sight condition. Barrier effects in wave propagation. Diffraction links. Tropospheric refractive index. Tropospheric propagation, refraction, waveguiding, scattering. Radio horizon. Multiple routes. Intervals. Differential reception systems. Atmosphere attenuation.

	Critical frequency and ionosphere changes. Ionospheric propagation, refraction, reflection, scattering. Applications.
	Calculation of radio links. Over sharp obstacle links. Line-of-sight links. Above perfect ground links. Technical characteristics and practical applications of wireless.
	links.
Course type	Project-based (exclusively)
Assessment	Final project evaluation. Blended learning using synchronous and asynchronous
Dirk is a second as	methods.
Bibliography	<u>Kelated to Microwave and Millimeter-wave Communications, Technology and</u>
	• A S Khan and S K Mukerii <i>Electromagnetic Fields</i> : Theory and Applications
	CRC Press, 2020.
	• J.P. Dunsmore, Handbook of Microwave Component Measurements: With
	Advanced VNA Techniques, Wiley, 2020 (2nd Edition), ISBN-10: 1119477131.
	• K. Kuang and R. Sturdivant, <i>RF and Microwave Microelectronics Packaging II</i> , Springer 2017 ISBN-10: 3319516965
	• I. Robertson, N. Somjit, and M. Chongcheawchamnan, <i>Microwave and Millimetre</i> -
	Wave Design for Wireless Communications, Wiley, 2016, ISBN-10: 1118917219.
	• S. Mumtaz, J. Rodriguez, and L. Dai, mmWave Massive MIMO: A Paradigm for
	5G, Academic Press, 2016, ISBN-10: 0128044187.
	• KW. Yeom, Microwave Circuit Design: A Practical Approach Using ADS, Pearson 2015
	• A.A. Behagi, <i>RF and Microwave Circuit Design: A Design Approach Using ADS</i> ,
	Techno Search, 2015, ISBN-10: 0996446613.
	• T.S. Rappaport, R.W. Heath, R.C. Daniels, and J.N. Murdock, <i>Millimeter Wave Wireless Communications</i> , Pearson, 2014, ISBN-10: 0132172283.
	• A.I. Kozlov, L.P. Ligthart, and A.I. Logvin, <i>Mathematical and Physical Modelling</i>
	of Microwave Scattering and Polarimetric Remote Sensing: Monitoring the Earth's
	Environment Using Polarimetric Radar: Formulation and Potential Applications, Springer 2014 ISBN 10: 9401739110
	• R. Sturdivant, Microwave and Millimeter-Wave Electronic Packaging, Artech
	House, 2014, ISBN-10: 1608076970.
	• R. Garg, I. Bahl, and M. Bozzi, <i>Microstrip Lines and Slotlines</i> , Artech House, 2013 (3rd Edition) ISBN-10: 1608075354
	 B. Razavi, <i>RF Microelectronics</i>, Pearson Education Ltd, 2013 (2nd Edition), ISBN:
	1292024720.
	• C.A. Balanis, <i>Advanced Engineering Electromagnetics</i> , Wiley, 2012 (2nd Edition), ISBN-10: 0470589485
	• U.L. Rohde and M. Rudolph, <i>RF and Microwave Circuit Design for Wireless</i>
	Communications, Wiley, 2012 (2nd Edition), ISBN: 1118431405.
	• A. Georgiadis, H. Rogier, L. Roselli and P. Arcioni, Microwave and Millimeter
	Wave Circuits and Systems: Emerging Design, Technologies and Applications, Wilow 2012, ISBN 10: 1110044045
	• D.M. Pozar Microwaye Engineering Wiley 2011 (Ath Edition) ISBN 10.
	0470631554.
	• KC. Huang and Z. Wang, Millimeter Wave Communication Systems, Wiley-IEEE,
	2011, ISBN-10: 0470404620.

• M. Golio, <i>RF and Microwave Handbook</i> , CRC Press, 2008 (2nd Edition), ISBN-10: 0840372178
 J.G. van Bladel, <i>Electromagnetic Fields</i>, Wiley-IEEE Press, 2007 (2nd Edition), ISBN-10: 0471263885.
• T.S. Laverghetta, <i>Microwaves and Wireless Simplified</i> , Artech House, 2006 (2nd Edition), ISBN-10: 1580539432.
• D.K. Misra, <i>Radio-Frequency and Microwave Communication Circuits: Analysis and Design</i> , Wiley-Interscience, 2004 (2nd Edition), ISBN-10: 9780471478737.
• W.F. Egan, <i>Practical RF System Design</i> , Wiley- IEEE, 2003, ISBN-10: 0471200239.
• R.E. Collin, <i>Foundations for Microwave Engineering</i> , Wiley-IEEE Press, 2001 (2nd Edition), ISBN-10: 0780360311
 K. Chang, <i>RF and Microwave Wireless Systems</i>, Wiley-Interscience, 2000, ISBN- 10: 0471351997
 T.S. Laverghetta, <i>Microwave Materials and Fabrication Techniques</i>, Artech House, 2000 (3rd Edition), ISBN: 1580530648
 B.Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and
M. Thumm, Theory of Nonuniform Waveguides – The Cross-Section Method, IEE, 1998, ISBN: 085296918X.
• R.G. Winch, <i>Telecommunication Transmission Systems</i> , McGraw Hill, 1998 (2nd Edition) ISBN-10: 007070970X
 P. Vizmuller, <i>RF Design Guide: Systems, Circuits, and Equations</i>, Artech House, 1995, ISBN: 0890067546.
• G. Roussy and J.A. Pearce, Foundations and Industrial Applications of Microwaves and Radio Frequency Fields – Physical and Chemical Processes, Wiley, 1995, ISBN-10: 0471938491.
 ARRL, The ARRL UHF/Microwave Projects Manual – Vol. 1, ARRL, 1994, ISBN: 0872594491.
• S. Ramo, J.R. Whinnery, and T.V. Duzer, <i>Fields and Waves in Communication Electronics</i> , Wiley, 1994 (3rd Edition), ISBN-10: 0471585513.
• G.H. Bryant, <i>Principles of Microwave Measurements</i> , IET, 1993 (Revised Edition), ISBN: 0863412963.
• B.L. Smith and MH. Carpentier, <i>The Microwave Engineering Handbook – Vol. 1:</i> <i>Microwave Components</i> , Van Nostrand Reinhold, 1993, ISBN-10: 0442315880
• B.L. Smith and MH. Carpentier, <i>The Microwave Engineering Handbook – Vol. 2:</i> <i>Microwave Circuits, Antennas and Propagation</i> , Van Nostrand Reinhold, 1993
 (2009th Edition), ISBN-10: 1441901140. B. Smith and M.H. Carpentier, <i>The Microwave Engineering Handbook – Vol. 3</i>:
Microwave Systems and Applications, Springer, 1992 (1993rd Edition), ISBN-10: 041245680X.
• D.A. Olver, <i>Microwave and Optical Transmission</i> , Wiley, 1992, ISBN-10: 047193478X.
• S.F. Mahmoud, <i>Electromagnetic Waveguides: Theory and Applications</i> , IET, 1991, ISBN 10: 0863412327
 R.E. Collin, <i>Field Theory of Guided Waves</i>, Wiley-IEEE Press, 1990 (2nd Edition), ISBN-10: 0879422378

 A.E. Fantom, <i>Radio Frequency and Microwave Power Measurement</i>, IET, 1990, ISBN-10: 0863411207. T. Itoh, <i>Numerical Techniques for Microwave and Millimeter-Wave Passive Structures</i>, Wiley-Interscience, 1989, ISBN-10: 9780471625636. N. Marcuvitz, <i>Waveguide Handbook</i>, IET, 1986, ISBN-10: 0863410588.
Related to Antennas
 C. Parini, S. Gregson, J. McCormick, D.J. van Rensburg, and T. Eibert, <i>Theory and Practice of Modern Antenna Range Measurements</i>, SciTech Publishing, 2021 (2nd Edition), ISBN-10: 1839531282.
• ARRL, <i>The ARRL Antenna Book for Radio Communications</i> , American Radio Relay League, 2019 (24th edition), ISBN-10: 1625951116.
• J. Volakis, Antenna Engineering Handbook, Mc Graw Hill, 2018 (5th edition), ISBN-10: 1259644693.
• J.D. Kraus, R.J. Marhefka, and A.S. Khan, <i>Antennas and Wave Propagation</i> , Mc-Graw Hill India, 2017 (5th edition), ISBN-10: 9352606183.
• R.J. Mailloux, <i>Phased Array Antenna Handbook</i> , Artech House, 2017 (3rd Edition), ISBN-10: 1630810290.
• C.A. Balanis, <i>Antenna Theory: Analysis and Design</i> , Wiley, 2016 (4th edition), ISBN-10: 1118642066.
• W.L. Stutzman and G.A. Thiele, <i>Antenna Theory and Design</i> , Wiley, 2012 (3rd edition), ISBN-10: 0470576642.
• S.K. Das and A. Das, <i>Antenna and Wave Propagation</i> , Tata Mc-Graw Hill Education, 2012, ISBN-10: 1259097587.
• J. Carr and G. Hippisley, <i>Practical Antenna Handbook</i> , Mc Graw Hill, 2011 (5th edition), ISBN-10: 9780071639583.
 R.E. Collin, Antennas and Radiowave Propagation, Mc-Graw Hill, 1985, ISBN-10: 0070118086.

Course Title	CAD/CAM Systems, 3D Modeling and Reverse Engineering
Instructor	Emmanuel Maravelakis – Associate Professor
Study level	Bachelor Winter Semester
ECTS	5
Prerequisite	-
Learning	The core activity in any CAD system is the development of the 3D model which can
Outcomes	then be used in a various field of applications including 3D printing. This course
	focuses on CAD/CAM systems for 3D modeling and 3D printing, with emphasis on
	the mechanical design which is the largest application area of technology
	internationally. Different 3d modeling techniques, including surface modeling, solid
	modeling, industrial design and reverse engineering are described. Furthermore this
	course presents current 3d rapid prototyping and 3D printing technologies, such as
	stereolithography, selective laser sintering, fused deposit modeling and metal binder
	jetting.
Contents	Lecture 01: Introduction to Computer Aided Design
	Lecture 02: CAD/CAM systems in the product development cycle

	Lecture 03: Industrial Applications of CAD/CAM Systems
	Lecture 04: Industrial Design
	Lecture 05: Basic Surface Modelling
	Lecture 06: 3D models from reverse engineering
	Lecture 07: Solid modeling & Parametric Design
	Lecture 08: Sheetmetals
	Lecture 09: Prototyping
	Lecture 10: Rapid Prototyping
	Lecture 11: 3D Printing Technologies
	Lecture 12: 3D Printing Applications
	Lecture 13: Review of the Course
Course type	Lectures, laboratory exercise, project
Assessment	I. Written final exam (WFE) (80%)
	- General questions
	- Problem solving / calculations
	- Comparative evaluation of theory elements
	II. Individual Project (IP) (20%)
	- Laboratory work / technical reports / measurements in small groups
Bibliography	 Bar-Cohen, Yoseph. Advances in Manufacturing and Processing of Materials and Structures. CRC Press, 2018.
	• Bilalis N. and Maravelakis E., CAD/CAM systems & 3D modelling, 3rd edition,
	Kritiki Press 2020.
	• MARAVELAKIS, E., ANTONIADIS, A., MANIOS, A., DAVID, K., BILALIS, N.,
	and PAPAHARILAOY, Y., "Reverse Engineering Techniques for Cranioplasty. A
	case study" Journal of Medical Engineering & Technology, Vol. 32(2), 2008, pp.115- 121.
	• Maravelakis E., Bilalis N., Mantzorou I., Konstantaras A., Antoniadis A., (2012), "3D
	modelling of the oldest olive tree of the world", IJCER, Vol. 2(2), 340-347.
	• UM. D., Solid Modeling and Applications, Rapid Prototyping, CAD and CAE Theory,
	Springer, 2nd edition, 2018.
	• VUKASINOVIC, N. and DUHOVNIK, J., Advanced CAD Modeling, Explicit,
	Parametric, Free-Form CAD and RE-Engineering, Springer, 2019.
	• Stark, John. What every engineer should know about practical CAD/CAM
	Applications. CRC Press, 2021.

Course Title	EcoDesign
Instructor	Emmanuel Maravelakis – Associate Professor
Study level	Bachelor Spring Semester
ECTS	5
Prerequisite	-
Learning	Upon completion of the course, students will have the ability to:
Outcomes	\checkmark Apply the basic principles of ecological design of a product.
	\checkmark Asses the environmental impact and energy costs of a product throughout its
	life cycle.

	\checkmark Reduce energy costs and environmental impact when designing, producing and
	using a product.
Contents	Basic Principles of Eco-Friendly Product Design and Development. Design for the
	Environment, Eco-design Principles (OS) and Innovation. Universal Design (Design
	for all), Design for Assembly, Design for Dissasembly. Environmentally friendly
	materials and product packaging. Environmental Management Systems and
	Ecological Planning. The life cycle of electronic devices and its environmental
	impact. Quantitative and qualitative methods for environmental impact assessment.
	Eco-labeling, Regulations and Directives of the European Parliament. Eco-design
	requirements for, Electronic Appliances, Air-conditioning and ventilation systems.
	Green roofs and ecofriendly houses.
Course type	Lectures, exercises, project
Assessment	I. Written final exam (WFE) (50%)
	- General questions
	- Problem solving / calculations
	- Comparative evaluation of theory elements
	II. Individual Project (IP) (50%)
Bibliography	• Product Design for the Environment: A Life Cycle Approach (2006), by Fabio Giudice,
	Guido La Rosa, Antonino Risitano, CRC Press
	Green Design (2006) by Poole, Buzz, Mark Batty Publisher
	• EcoDesign: The Sourcebook (2002), by Alastair Fuad-Luke, Chronicle Books
	• EcoDesign: A Manual for Ecological Design (2006), by Ken Yeang, Wiley, John & Sons
	Experimental EcoDesign (2005), Cara, Brower, Rachel, Mallory, Rotovision
	Environmentally-Friendly Product Development (2004), Springer-Verlag London Ltd
	• The Eco-Design Handbook (2005), Alastair, Fuad-Luke, Thames & Hudson Ltd